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Overview of synaptic transmission at chemical synapses

Functional organization of chemical synapses

1011 neurons in the human brain, each containing 103 synapses.
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Overview of synaptic transmission at chemical synapses

Modeling SNARE complex activation by calcium ions
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Overview of synaptic transmission at chemical synapses

Modeling SNARE complex activation by calcium ions

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Ca2+

Synaptic vesicle

SNARE Cx

Ca2+

Calcium ions: Brownian particles.

Docked vesicle: a sphere tangent
to the surface of the Active Zone.

Binding on the SNARE Complex:
a particle reaches the red cylinder
between the vesicle and the
pre-synaptic membrane.
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1 Overview of synaptic transmission at chemical synapses

2 Asymptotic analysis of the narrow escape problem at a cusp



Asymptotic analysis of the narrow escape problem at a cusp

The narrow escape problem in a cusp

A Brownian particle is described by the stochastic equation

Ẋ =
√
2Dẇ.

The first time to exit the domain Ω̄ through the small hole ∂Ω̄a, starting from x is

τ(x) = inf{t > 0;X(t) /∈ Ω̄|X(0) = x ∈ Ω̄}.
The mean first passage time

u(x) = E(τ(x))

is the solution of the mixed boundary value problem



























D∆u(x) = −1 for x ∈ Ω̄

∂u

∂n
(x) = 0 for x ∈ ∂Ω̄ \ ∂Ω̄a

u(x) = 0 for x ∈ ∂Ω̄a,

where |∂Ω̄a| ≪ |∂Ω̄|.

(Dynkin, 1961)
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Asymptotic analysis of the narrow escape problem at a cusp

Reduction to a 2D problem

Integrating over θ, we get

×

e1

e2

e3∆

0

Ω̄

∂Ω̄a

The problem is independent of θ in
cylindrical coordinates x = (r, θ, z).
It is equivalent to the following problem
in Ω:
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Reduction to a 2D problem

Integrating over θ, we get

×

e1

e2

e3∆

0

Ω̄

∂Ω̄a

The problem is independent of θ in
cylindrical coordinates x = (r, θ, z).
It is equivalent to the following problem
in Ω:

.

R2

R1

Ω

×

×

z

r0
∂Ωa

ra
+

|∂Ωa| = ε ≪ R1,

ra =
√

2 R1R2

R2−R1
ε (1 + o(1)) .











































∂2u

∂r2
(r, z) +

1

r

∂u

∂r
(r, z)+

∂2u

∂z2
(r, z)

=− 1

D
for (r, z) ∈ Ω

∂u

∂n
(r, z) =0 for (r, z) ∈ ∂Ω \ ∂Ωa

u(r, z) =0 for (r, z) ∈ ∂Ωa.
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Asymptotic analysis of the narrow escape problem at a cusp

Conformal mapping of domain Ω

R2

R1

Ω

×

×

z

r0
∂Ωa

1×

0
∂Ωa

ra
+

z1
z2

+
+

0 sa = 1

ra

s

t

− 1

2R1

− 1

2R2

Ω̃

∂Ω̃a

f(r+ iz) =
1

r+ iz

Boundary value problem for v(s, t) = u(r, z), where f(r + iz) = 1
r+iz

= s+ it:



























(s2 + t2)2∆v(s, t) +
s2 + t2

s

(

∂s

∂r

∂v

∂s
(s, t) +

∂t

∂r

∂v

∂t
(s, t)

)

=− 1

D
for (s, t) ∈ Ω̃

∂v

∂n
(s, t) =0 for (s, t) ∈ ∂Ω̃ \ ∂Ω̃a

v(s, t) =0 for (s, t) ∈ ∂Ω̃a.
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Asymptotic analysis of the narrow escape problem at a cusp

The inner solution near the absorbing boundary

Scaling:

ζ = s
√
2Rε = s

√
ε̃,

(

R =
R1R2

R2 −R1

)

Y (ζ, t) = v(s, t),

and a regular expansion of Y in power of ε̃

Y (ζ, t) = Y0(ζ, t) + ε̃Y1(ζ, t) + ε̃2Y2(ζ, t) + ...

gives the expansion for the equation in the mapped domain:

1

ε̃2

[

ζ4
∂2Y0

∂t2

]

+
1

ε̃

[

ζ4
∂2Y1

∂t2
+ ζ4

∂2Y0

∂ζ2
+ 2ζ2t2

∂2Y0

∂t2
− ζ3

∂Y0

∂ζ
+ 2ζ2t

∂Y0

∂t

]

= O(1).
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= O(1).

Leading order term O(ε̃−2):
Using the boundary conditions,

∂Y0

∂t
(ζ, t) = 0.
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The inner solution near the absorbing boundary

Scaling:

ζ = s
√
2Rε = s

√
ε̃,

(

R =
R1R2

R2 −R1

)

Y (ζ, t) = v(s, t),
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gives the expansion for the equation in the mapped domain:

1

ε̃2

[

ζ4
∂2Y0
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+
1

ε̃

[

ζ4
∂2Y1

∂t2
+ ζ4

∂2Y0

∂ζ2
+ 2ζ2t2

∂2Y0

∂t2
− ζ3

∂Y0

∂ζ
+ 2ζ2t

∂Y0

∂t

]

= O(1).

Leading order term O(ε̃−2):
Using the boundary conditions,

∂Y0

∂t
(ζ, t) = 0.

Second order term O(ε̃−1):

ζ4
∂2Y1(ζ, t)

∂t2
+ ζ4

∂2Y0(ζ)

∂ζ2
− ζ3

∂Y0(ζ)

∂ζ
= 0.

Integrating over t and using the boundary
conditions, we obtain

Y0(ζ) = A
(

1− ζ2
)

,

and
v(s, t) = A

(

1− s2ε̃
)

.
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Asymptotic analysis of the narrow escape problem at a cusp

Computation of A using the divergence theorem

v(s, t) = A
(

1− 2Rεs2
)

.

The constant A is determined from the divergence theorem

∫

Ω̄
∆u =

∫

∂Ω̄

∂u

∂n

−|Ω̄|
D

=

∫

Ω̄
∆u =

∫

∂Ω̄

∂u

∂n
= 2π

√
2Rε

∫ ε

0

∂u

∂r
dz = −4πAε.

Thus

A =
|Ω̄|

4πDε
.

The leading order term of the mean first passage time outside of the boundary layer is obtained
by setting s = 0. It is independent of the initial position:

τ =
|Ω̄|

4πDε
.

In the boundary layer, the leading order term of the mean first passage time is:

v(s, t) =
|Ω̄|

4πDε

(

1− 2Rεs2
)

.
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Asymptotic analysis of the narrow escape problem at a cusp Summary

Summary

We computed the leading order term of the mean first passage time to a
small ribbon located between two tangent spheres.

The mean first passage time is constant outside of a boundar layer near the
cusp, and is well approximated by a Poisson process.
(Schuss et al., PNAS 2007)

Next steps of the project:

We built a model of the Active Zone, and investigated the influence of
channels and vesicular organization on the release probability.

We combined our previous result on the mean first passage time and the
model of the Active Zone to build a model of the pre-synaptic terminal.

This approach allows us to replace a model initially described using a system
of PDE, with a system of ODE coupled to a Markov chain.

We could the realize fast stochastic simulations using a Gillespie algorithm.
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Questions

Comparison with MFPT in other geometries

XXXXXXXXX

×

Ω̄

∂Ω̄a

XXXXXXXXX

τ =
|Ω̄|

4πDε

Surface of the hole: |∂Ω̄a| = 2π
√
2Rε3/2.

(Guerrier et al., MMS, 2015)

XXXXXXXXX

×

S

∂Sa Small hole on a sphere:

τ =
|S|
4Da

.

Surface of the hole:
|∂Sa| = πa2.

(Singer et al., J. Stat.

Phys., 2006)

XXXXXXXXX

Σ

∂Σa

Small hole at the end of
a funnel-shaped cusp:

τ =
|Σ|

√
R

Da3/2
.

Surface of the hole:
|∂Σa| = πa2.

(Holcman et al., MMS,

2012)



Questions

The Climbing Fiber to Purkinje cell synapses

Serial Electron Microscopy section of
Climbing Fiber (CF) synapses.

Blue: CF pre-synaptic terminal
Pink: Purkinje cell.
Yellow: Astrocytes.
(Xu-Friedman et al., J Neuroscience 2001.)

We observe several vesicles in the
terminal.

Some vesicles are docked to the
pre-synaptic membrane.

They are docked at the Active
Zone, where calcium channels are
also located.



Questions

Modeling the Active Zone

Active Zone: a dense region apposed to the post-synaptic neuron where calcium channels and
docked vesicles are located.

A.Z.



Questions

Modeling the Active Zone

Active Zone: a dense region apposed to the post-synaptic neuron where calcium channels and
docked vesicles are located.

A.Z.

Model:

Vesicles are spheres located on a square lattice. There radius is 20 nm.
(Xu-Friedman et al., J Neuroscience 2001.)

Distance between vesicles: between 60 and 150 nm. (Rollenhagen et al., Cell Tissue Res 2006.)

Channels can be uniformly distributed or clustered.
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Close to the target, the splitting probability

Ω̄P

H
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Questions

Close to the target, the splitting probability

Ω̄P

H

∂Ω̄P,out

∂Ω̄P,a

Splitting probability: probability to reach the red target ∂Ω̄P,a before reaching the orange
boundary ∂Ω̄P,out



























∆ps(x) = 0 for x ∈ Ω̄P

ps(x) = 1 for x ∈ ∂Ω̄P,a

ps(x) = 0 for x ∈ ∂Ω̄P,out

∂ps

∂n
(x) = 0 for x ∈ ∂Ω̄P \

(

∂Ω̄P,a ∪ ∂Ω̄P,out

)

.



Questions

Restriction to a 2D problem

Our previous results motivate the restriction of the analysis to the domain ΩP :
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Questions

Restriction to a 2D problem

Our previous results motivate the restriction of the analysis to the domain ΩP :

R ΩP
×

z

H r0
∂ΩP,a

∂ΩP,out

0 sa
s

t

− 1

2R

1

H

Ω̃P ∂Ω̃P,a

f(r+ iz) =
1

r+ iz

In cylindrical coordinates, we get:


































∆ps +
1

r

∂ps

∂r
(r, z) = 0 for (r, z) ∈ ΩP

ps(r, z) = 1 for (r, z) ∈ ∂ΩP,a

ps(r, z) = 0 for (r, z) ∈ ∂ΩP,out

∂ps

∂n
(r, z) = 0 for (r, z) ∈ ∂ΩP \

(

∂ΩP,a ∪ ∂ΩP,out

)

.

Using our previous mapping method and the boundary condition at ∂ΩP,a we obtain:

ps(r, 0) = 1−A

(

1− 2Rε

r2

)

.



Questions

Numerical approximation of the splitting probability

We express the splitting probability as a function of ps(H, 0) = p(ε,R,H):

ps(r, 0) = 1− 1− p(ε,R,H)

1− 2Rε

H2

(

1− 2Rε

r2

)

.

We determine p(ε,R,H) using Brownian simulations:
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Fit: y =b x
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Brownian simulations

Fit: y =a x−3

⇒ p(ε,R,H) = αR2ε
H3

, α is fitted numerically using Matlab. We get:

papproxs (r, 0) = 1−
1− 9.8

R2ε

H3

1− 2Rε

H2

(

1− 2Rε

r2

)

, R ≤ H, 0 ≤ r ≤ H.



Questions

Comparison between the splitting probability and Brownian simulations

We observe a nice agreement between Brownian simulations and the asymptotic formula:

papproxs (r, 0) = 1−
1− 9.8

R2ε

H3

1− 2Rε

H2

(

1− 2Rε

r2

)

,

for different values of H and ε:
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Questions

Estimation of the vesicular release probability

We compute the probability pact(r, N) that T calcium ions bind the target, when N ions enter
through a channel at distance r:

pact(r, N) = 1−
T−1
∑

k=0

(N

k

)

ps(r)
k (1− ps(r))

N−k .
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High crowding of vesicles is associated with high release probability.

A synapse with high release requires a nm precision of channel location. It can be
compensated by channel clustering.



Questions

Modeling calcium dynamic in the pre-synaptic terminal

.

+

Ca2+

Ca2+

Ca2+

Calcium ions

Buffers

Vesicles

Calcium channels

Calcium pumps

AZ

The terminal is a sphere (head)
connected to a cylinder (thin neck).

Calcium ions are Brownian particles.

They enter through calcium channel
located at the AZ.

They can bind and unbind buffer
molecules: specific proteins that
regulate calcium concentration in the
terminal.

They leave the terminal through
calcium pumps, or through the end of
the neck.



Questions

A Markov model coupled to mass action equations

Calcium
influx
J(t)

Ca+B
kB−−⇀↽−−
k−1

B − Ca

Ca+ P
kpump
−→ ∅

Ca
kes−→ ∅

1st step ... k step ... T step

1
−
p s

p
s

k
S

k
S

k
S

Bulk
(Continuum)

Active Zone
(Discrete)

We model the activation of the SNAREs at the Active Zone using a Markov chain, with
rates that depend on the density of ions.

The arrival to small holes (buffers, pumps, targets) is well approximated by Poisson
processes, with rates the inverse of the mean first passage time.

It allows to derive a system of ordinary differential equations for the density of ions in the
terminal



Questions

A Markov chain to describe target activation at the Active Zone

For each target i, the probabilities to have k particles bound, pik(t), 0 ≤ k ≤ T are solution of
the following system of equations:



































dpi0(t)

dt
=− φ(t)pi0(t)

dpik(t)

dt
=φ(t)

(

pik−1(t) − pik(t)
)

dpiT (t)

dt
=φ(t)piT−1(t),

and with initial conditions pik(0) = δk=0,

and normalization condition
∑T

k=0 p
i
k(t) = 1.

φ(t) =

lV
∑

l=1

Ji(xl, t) + kTargetNf (t),

Ji(xl, t) represents the flux fraction of particles arriving at target i, coming from a calcium
channels located at xl,
kTargetNf (t) represents the binding of calcium ions coming from the terminal.



Questions

The mass action equations for the ions in the bulk

The number of free particles in the bulk Nf and the number of buffered ones Nb satisfies:














































































dNf

dt
=k−1Nb − kB(Btot −Nb)Nf (t) +



lV −
lV
∑

l=1

ps(x
l)



 J(t)

−



kpumpNp + kes + kTarget



NDock −
NDock
∑

i=1

piT (t)







Nf (t)

+ T

NDock
∑

i=1





lV
∑

l=1

Ji(xl, t) + kSNf (t)



 piT−1(t)

dNb

dt
=− k−1Nb + kB(Btot −Nb)Nf .

Influx of ions en-
tering the bulk

Total number
of free sites.

Release of bound
ions in the bulk after

vesicular fusion.



Questions

Parameters estimation

The arrival time of a Brownian particle to a small target is well approximated by a Poisson
process, with rate the inverse of the mean first time (kX = 1

τ̄X
).

(Schuss et al., PNAS 2007)

Mean binding time to a buffer:

τ̄B =
|Ωh|

4π(D +DB)rbuff
. (Holcman et al., SIAM Rev 2014)

Mean escape time to a pump:

τ̄pump =
|Ωh|

4Drpump
. (Holcman et al., SIAM Rev 2014)

Mean escape time through the neck:

τ̄es =
|Ωh|

4Drneck
+

lneck |Ωh|
Dπr2neck

+
l2neck

2D
. (Holcman et al., SIAM Rev 2014)

Mean binding time to a SNARE complex:

τ̄Target =
|Ωh|
4πDε

. (Guerrier et al., MMS 2015)

The unbinding rate from buffers k−1 is extracted from litterature.
(Meinrenken et al., J. Physiol 2003)



Questions

Distribution of release time for a uniform channel distribution
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Gillespie

Markov−mass action
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Calcium entry: for 0 ≤ t ≤ 5 ms.

Outside of the AZ: mean arrival time to the SNARE Complex:
|Ω̄|

4πDε
≈ 4 sec .

Mean time to escape the AZ: τ̄ = 2R2

D
≈ 4µs.

Mean time to bind the SNARE from the AZ: < 7µs.



Questions

Reaction-diffusion equations for calcium in the pre-synaptic terminal

The reaction-diffusion equation of the density of calcium ions M(x, t), the density of buffers
with (B(1)) and without (B(0)) bound calcium ions, and the density of targets (SNARE
machinery) with j bound particles S(j) are:



















































































































∂M(x, t)

∂t
=D∆M(x, t) − k0M(x, t)B(0)(x, t) + k−1B

(1)(x, t)

− kSM(x, t)

T−1
∑

j=0

S(j)(x, t) + TkSM(x, t)S(T−1)(x, t)

∂B(0)(x, t)

∂t
=DB∆B(0)(x, t) − k0M(x, t)B(0)(x, t) + k−1B

(1)(x, t)

∂B(1)(x, t)

∂t
=DB∆B(1)(x, t) − k−1B

(0)(x, t) + k0M(x, t)B(1)(x, t)

∂S(0)(x, t)

∂t
=− kSM(x, t)S(0)(x, t),

∂S(j)(x, t)

∂t
=kSM(x, t)

[

S(j−1)(x, t)− S(j)(x, t)
]

, j = 1..T − 1

∂S(T )(x, t)

∂t
=kSM(x, t)S(T−1)(x, t).

⇒ Analytical and numerical difficulties due to the particular organization of the Active Zone.



Questions

How to choose ∆t for Brownian simulations

armin

rmax

∆tmin ≤
(αa)2

4D∆tmax ≤
(αR)2

4D

∆tmid

×

R



Questions

Funnel-shaped cusp
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Questions

Model of target site organization at the AZ

.

x

SQ

2H

2r
v
es

SAZ

Bulk
Probability that a particle reaches a target
before leaving the boundary layer on an
infinite AZ full of vesicles, starting from x:

ps(x) = 1−
1− 9.8

r2vesε

H3

1− 2rvesε

H2

(

1− 2rvesε

r(x)2

)

.

We estimate using Brownian simulations the probability q (x, i) to reach specifically target i,
and fit the results using Matlab.

S1
q

SQ
H

×x
r
θ

0 50 100
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. q

((
r,θ

),
i)

Flux fraction to vesicle i coming from a channel at x: Ji(x, t) = J(t)ps(x)q(x, i).



Questions

A Markov chain to describe target activation at the AZ

Transition probability from k − 1 to k bound particles, for lV channels located at (x1, ..,xlV ):

Pri{k, t+∆t,x1, ..,xlV } =Pri{k − 1, t,x1, ..,xlV }φ(t,x1, ..,xlV )∆t

+ Pri{k, t,x1, ..,xlV }
(

1− φ(t,x1, ..,xlV )∆t
)

,

where φ(t,x1, ..,xlV ) =
∑lV

l=1 J
i(xl, t) + kSNf (t) is the flux of particles arriving to the target.

For each target i, the Markov chain for pik(t,x
1, ..,xlV ) = Pri{k, t,x1, ..,xlV } is



































dpi0(t,x
1, ..,xlV )

dt
=− φ(t,x1, ..,xlV )pi0(t,x

1, ..,xlV )

dpik(t,x
1, ..,xlV )

dt
=φ(t,x1, ..,xlV )

(

pik−1(t,x
1, ..,xlV )− pik(t,x

1, ..,xlV )
)

dpiT (t,x1, ..,xlV )

dt
=φ(t,x1, ..,xlV )piT−1(t,x

1, ..,xlV ),

with initial conditions pik(0,x
1, ..,xlV ) = δk=0,

and normalization condition
∑T

k=0 p
i
k(t,x

1, ..,xlV ) = 1.



Questions

The mass action equations for the ions in the bulk

The number of free particles in the bulk Nf and the number of buffered ones Nb satisfies:














































































dNf

dt
=k−1Nb − k0(Btot −Nb)Nf (t) +



lV −
lV
∑

l=1

ps(x
l)



J(t)

−



kpNp + ka + kS



NDock −
NDock
∑

i=1

piT (t,x1, ..,xlV )







Nf (t)

+ T

NDock
∑

i=1





lV
∑

l=1

Ji(xl, t) + kSNf (t)



 piT−1(t,x
1, ..,xlV )

dNb

dt
=− k−1Nb + k0(Btot −Nb)Nf .

Influx of ions en-
tering the bulk

Total number
of free sites.

Probability density function f
τi
T
,x1,..,xlV

of the release time for target i, τ iT :

f
τi
T
,x1,..,xlV

(t) =
dpiT (t,x1, ..,xlV )

dt
=





lV
∑

l=1

Ji(xl, t) + kSNf (t)



 piT−1(t,x
1, ..,xlV )

⇒ T
∑NDock

i=1

(

∑lV
l=1 J

i(xl, t) + kSNf (t)
)

piT−1(t,x
1, ..,xlV ): release of bound ions in the

bulk after a vesicular release event.
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∑NDock

i=1

(
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l=1 J

i(xl, t) + kSNf (t)
)

piT−1(t,x
1, ..,xlV ): release of bound ions in the

bulk after a vesicular release event.



Questions

Solving the coupled Markov equations

For each target i, and a channel distribution (x1, ..,xlV ), the flux of arriving particle is

gi(t,x1, ..,xlV ) =

lV
∑

l=1

ps(x
l)q(xl, i)J(t) + kSNf (t).

Probability to have k bound ions at target i at time t (0 ≤ k ≤ T − 1.):

pik(t,x
1, ..,xlV ) =

1

k!

(∫ t

t0

gi(u,x1, ..,xlV )du

)k

exp

(

−
∫ t

t0

gi(u,x1, ..,xlV )du

)

.

Distribution of release time:

piT (t,x1, ..,xlV ) = exp

(

−
∫ t

t0

gi(u,x1, ..,xlV )du

)

∑

k≥T

1

k!

(∫ t

t0

gi(u,x1, ..,xlV )du

)k

.



Questions

Brownian simulations

Ion trajectories are modeled as independent Brownian particles:

Ẋk =
√
2Dẇk, for k = 1..N,

simulated using the Euler scheme: X(t+∆t) = X(t) +
√
2D∆t ξ, ξ ∼ N (0, 1).

+

Ca2+

Ca2+

Ca2+

Calcium ions

Buffers

Vesicles

Calcium channels

Calcium pumps

AZ

Particles are reflected on the boundary according
to the classical Snell-Descartes reflection principle.

Absorbing part of the boundary: the end of the
neck and the pumps.

Binding on buffers: when the particle hits the small
sphere ∂B(rbuff ).
Unbinding probability:
P (τub ∈ [t, t +∆t]) ≈ k−1∆t.

AZ organization: as previously described.
Influx of ions: calcium current computed using a
Hodgkin-Huxley model.
Release of a vesicle: T particles bound to the
target trigger vesicular fusion.

⇒ The small holes require a very small time step for simulations, which leads to never ending
simulations.



Questions

Application: mean time to bind the SNARE complex.

Outside of the boundary layer:
Mean arrival time of a Brownian particle to the SNARE Complex:

τ =
|Ω̄|

4πDε
≈ 4 sec,

with:

Calcium diffusion coefficient D = 20µm2.s−1 (Biess et al., PLoS Comput. Biol., 2011)

Volume of the pre-synaptic terminal |Ω̄| = 1µm3 (Xu-Friedman et al., J. Neurosci., 2001)

Height of the ribbon ε = 0.001µm.

In the boundary layer:

Mean time spent in the boundary layer: τ̄ =
(2rves)

2

2D
≈ 4 10−3ms.

Mean time to bind the target < 7 10−3ms.



Questions

Distribution of ions on targets at the end of the transient regime, for a
uniform channel distribution

Fraction of ions coming from one channel, reaching a target :

Fions =

∫

SAZ

ps(x)q(x, i)f(x)dx

=
rvesε

NDockH2

[

π ln

(

2H√
2rvesε

)

+

(

9.8rves

H
− 2(K + 1)

)]

+ O(ε2 ln(ε)).

Mean probability that k particles are bound at time t, 0 ≤ k ≤ T − 1

pik(t) =

∫

S
lV
AZ

1

k!

(∫ t

t0

gi(u, ~x)du

)k

exp

(

−
∫ t

t0

gi(u, ~x)du

)

f(~x)dx1...dxlV ,
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