Asymptotic analysis for vesicular release at neuronal synapses

Claire Guerrier
Applied Mathematics and Computational Biology, École Normale Supérieure

Séminaire Les probabilités de demain

May $17^{\text {th }}, 2016$

Outline

1 Overview of synaptic transmission at chemical synapses
2 Asymptotic analysis of the narrow escape problem at a cusp

1 Overview of synaptic transmission at chemical synapses

2 Asymptotic analysis of the narrow escape problem at a cusp

Functional organization of chemical synapses

10^{11} neurons in the human brain, each containing 10^{3} synapses.

Modeling SNARE complex activation by calcium ions

Modeling SNARE complex activation by calcium ions

■ Calcium ions: Brownian particles.
■ Docked vesicle: a sphere tangent to the surface of the Active Zone.

- Binding on the SNARE Complex: a particle reaches the red cylinder between the vesicle and the pre-synaptic membrane.

-

1 Overview of synaptic transmission at chemical synapses

2 Asymptotic analysis of the narrow escape problem at a cusp

The narrow escape problem in a cusp

A Brownian particle is described by the stochastic equation

$$
\dot{\boldsymbol{X}}=\sqrt{2 D} \dot{\boldsymbol{w}}
$$

The first time to exit the domain $\bar{\Omega}$ through the small hole $\partial \bar{\Omega}_{a}$, starting from \boldsymbol{x} is

$$
\tau(\boldsymbol{x})=\inf \{t>0 ; \boldsymbol{X}(t) \notin \bar{\Omega} \mid \boldsymbol{X}(0)=\boldsymbol{x} \in \bar{\Omega}\} .
$$

The mean first passage time

$$
u(\boldsymbol{x})=\mathbb{E}(\tau(\boldsymbol{x}))
$$

is the solution of the mixed boundary value problem

$$
\left\{\begin{array}{l}
D \Delta u(\boldsymbol{x})=-1 \text { for } \boldsymbol{x} \in \bar{\Omega} \\
\frac{\partial u}{\partial n}(\boldsymbol{x})=0 \text { for } \boldsymbol{x} \in \partial \bar{\Omega} \backslash \partial \bar{\Omega}_{a} \\
u(\boldsymbol{x})=0 \text { for } \boldsymbol{x} \in \partial \bar{\Omega}_{a},
\end{array}\right.
$$

$$
\text { where }\left|\partial \bar{\Omega}_{a}\right| \ll|\partial \bar{\Omega}| \text {. }
$$

(Dynkin, 1961)

Reduction to a 2D problem

The problem is independent of θ in cylindrical coordinates $\boldsymbol{x}=(r, \theta, z)$.
It is equivalent to the following problem in Ω :

Reduction to a 2D problem

The problem is independent of θ in cylindrical coordinates $\boldsymbol{x}=(r, \theta, z)$. It is equivalent to the following problem in Ω :

$$
\left\{\begin{aligned}
\frac{\partial^{2} u}{\partial r^{2}}(r, z)+\frac{1}{r} \frac{\partial u}{\partial r}(r, z) & +\frac{\partial^{2} u}{\partial z^{2}}(r, z) \\
& =-\frac{1}{D} \text { for }(r, z) \in \Omega \\
\frac{\partial u}{\partial n}(r, z) & =0 \text { for }(r, z) \in \partial \Omega \backslash \partial \Omega_{a} \\
u(r, z) & =0 \text { for }(r, z) \in \partial \Omega_{a}
\end{aligned}\right.
$$

Conformal mapping of domain Ω

Boundary value problem for $v(s, t)=u(r, z)$, where $f(r+i z)=\frac{1}{r+i z}=s+i t$:

$$
\left\{\begin{aligned}
\left(s^{2}+t^{2}\right)^{2} \Delta v(s, t)+\frac{s^{2}+t^{2}}{s}\left(\frac{\partial s}{\partial r} \frac{\partial v}{\partial s}(s, t)+\frac{\partial t}{\partial r} \frac{\partial v}{\partial t}(s, t)\right) & =-\frac{1}{D} \text { for }(s, t) \in \tilde{\Omega} \\
\frac{\partial v}{\partial n}(s, t) & =0 \text { for }(s, t) \\
v(s, t) & =0 \text { for }(s, t) \backslash \partial \tilde{\Omega}_{a}
\end{aligned}\right\} \partial \tilde{\Omega}_{a} .
$$

The inner solution near the absorbing boundary

Scaling:

$$
\begin{gathered}
\zeta=s \sqrt{2 R \varepsilon}=s \sqrt{\tilde{\varepsilon}}, \quad\left(R=\frac{R_{1} R_{2}}{R_{2}-R_{1}}\right) \\
Y(\zeta, t)=v(s, t),
\end{gathered}
$$

and a regular expansion of Y in power of $\tilde{\varepsilon}$

$$
Y(\zeta, t)=Y_{0}(\zeta, t)+\tilde{\varepsilon} Y_{1}(\zeta, t)+\tilde{\varepsilon}^{2} Y_{2}(\zeta, t)+\ldots
$$

gives the expansion for the equation in the mapped domain:

$$
\frac{1}{\tilde{\varepsilon}^{2}}\left[\zeta^{4} \frac{\partial^{2} Y_{0}}{\partial t^{2}}\right]+\frac{1}{\tilde{\varepsilon}}\left[\zeta^{4} \frac{\partial^{2} Y_{1}}{\partial t^{2}}+\zeta^{4} \frac{\partial^{2} Y_{0}}{\partial \zeta^{2}}+2 \zeta^{2} t^{2} \frac{\partial^{2} Y_{0}}{\partial t^{2}}-\zeta^{3} \frac{\partial Y_{0}}{\partial \zeta}+2 \zeta^{2} t \frac{\partial Y_{0}}{\partial t}\right]=O(1)
$$

The inner solution near the absorbing boundary

Scaling:

$$
\begin{gathered}
\zeta=s \sqrt{2 R \varepsilon}=s \sqrt{\tilde{\varepsilon}}, \quad\left(R=\frac{R_{1} R_{2}}{R_{2}-R_{1}}\right) \\
Y(\zeta, t)=v(s, t),
\end{gathered}
$$

and a regular expansion of Y in power of $\tilde{\varepsilon}$

$$
Y(\zeta, t)=Y_{0}(\zeta, t)+\tilde{\varepsilon} Y_{1}(\zeta, t)+\tilde{\varepsilon}^{2} Y_{2}(\zeta, t)+\ldots
$$

gives the expansion for the equation in the mapped domain:

$$
\frac{1}{\tilde{\varepsilon}^{2}}\left[\zeta^{4} \frac{\partial^{2} Y_{0}}{\partial t^{2}}\right]+\frac{1}{\tilde{\varepsilon}}\left[\zeta^{4} \frac{\partial^{2} Y_{1}}{\partial t^{2}}+\zeta^{4} \frac{\partial^{2} Y_{0}}{\partial \zeta^{2}}+2 \zeta^{2} t^{2} \frac{\partial^{2} Y_{0}}{\partial t^{2}}-\zeta^{3} \frac{\partial Y_{0}}{\partial \zeta}+2 \zeta^{2} t \frac{\partial Y_{0}}{\partial t}\right]=O(1)
$$

Leading order term $O\left(\tilde{\varepsilon}^{-2}\right)$:
Using the boundary conditions,

$$
\frac{\partial Y_{0}}{\partial t}(\zeta, t)=0
$$

The inner solution near the absorbing boundary

Scaling:

$$
\begin{gathered}
\zeta=s \sqrt{2 R \varepsilon}=s \sqrt{\tilde{\varepsilon}}, \quad\left(R=\frac{R_{1} R_{2}}{R_{2}-R_{1}}\right) \\
Y(\zeta, t)=v(s, t),
\end{gathered}
$$

and a regular expansion of Y in power of $\tilde{\varepsilon}$

$$
Y(\zeta, t)=Y_{0}(\zeta, t)+\tilde{\varepsilon} Y_{1}(\zeta, t)+\tilde{\varepsilon}^{2} Y_{2}(\zeta, t)+\ldots
$$

gives the expansion for the equation in the mapped domain:

$$
\frac{1}{\tilde{\varepsilon}^{2}}\left[\zeta^{4} \frac{\partial^{2} Y_{0}}{\partial t^{2}}\right]+\frac{1}{\tilde{\varepsilon}}\left[\zeta^{4} \frac{\partial^{2} Y_{1}}{\partial t^{2}}+\zeta^{4} \frac{\partial^{2} Y_{0}}{\partial \zeta^{2}}+2 \zeta^{2} t^{2} \frac{\partial^{2} Y_{0}}{\partial t^{2}}-\zeta^{3} \frac{\partial Y_{0}}{\partial \zeta}+2 \zeta^{2} t \frac{\partial Y_{0}}{\partial t}\right]=O(1)
$$

Second order term $O\left(\tilde{\varepsilon}^{-1}\right)$:

Leading order term $O\left(\tilde{\varepsilon}^{-2}\right)$: Using the boundary conditions,

$$
\frac{\partial Y_{0}}{\partial t}(\zeta, t)=0
$$

$$
\zeta^{4} \frac{\partial^{2} Y_{1}(\zeta, t)}{\partial t^{2}}+\zeta^{4} \frac{\partial^{2} Y_{0}(\zeta)}{\partial \zeta^{2}}-\zeta^{3} \frac{\partial Y_{0}(\zeta)}{\partial \zeta}=0
$$

Integrating over t and using the boundary conditions, we obtain

$$
Y_{0}(\zeta)=A\left(1-\zeta^{2}\right),
$$

and

$$
v(s, t)=A\left(1-s^{2} \tilde{\varepsilon}\right) .
$$

Computation of A using the divergence theorem

$$
v(s, t)=A\left(1-2 R \varepsilon s^{2}\right)
$$

The constant A is determined from the divergence theorem

$$
\begin{gathered}
\int_{\bar{\Omega}} \Delta u=\int_{\partial \bar{\Omega}} \frac{\partial u}{\partial n} \\
-\frac{|\bar{\Omega}|}{D}=\int_{\bar{\Omega}} \Delta u=\int_{\partial \bar{\Omega}} \frac{\partial u}{\partial n}=2 \pi \sqrt{2 R \varepsilon} \int_{0}^{\varepsilon} \frac{\partial u}{\partial r} d z=-4 \pi A \varepsilon
\end{gathered}
$$

Thus

$$
A=\frac{|\bar{\Omega}|}{4 \pi D \varepsilon}
$$

The leading order term of the mean first passage time outside of the boundary layer is obtained by setting $s=0$. It is independent of the initial position:

$$
\tau=\frac{|\bar{\Omega}|}{4 \pi D \varepsilon}
$$

In the boundary layer, the leading order term of the mean first passage time is:

$$
v(s, t)=\frac{|\bar{\Omega}|}{4 \pi D \varepsilon}\left(1-2 R \varepsilon s^{2}\right)
$$

Summary

■ We computed the leading order term of the mean first passage time to a small ribbon located between two tangent spheres.

- The mean first passage time is constant outside of a boundar layer near the cusp, and is well approximated by a Poisson process. (Schuss et al., PNAS 2007)

Next steps of the project:
■ We built a model of the Active Zone, and investigated the influence of channels and vesicular organization on the release probability.

■ We combined our previous result on the mean first passage time and the model of the Active Zone to build a model of the pre-synaptic terminal.

■ This approach allows us to replace a model initially described using a system of PDE, with a system of ODE coupled to a Markov chain.
■ We could the realize fast stochastic simulations using a Gillespie algorithm.

Acknowledgements

IBENS
David Holcman
Jurgen Reingruber
Jing Yang
Assaf Amitai
Nathanael Hozé
Khanh Dao Duc
Jérôme Cartailler
Ofir Shukron
Pierre Parutto

Comparison with MFPT in other geometries

$$
\tau=\frac{|\bar{\Omega}|}{4 \pi D \varepsilon}
$$

Surface of the hole: $\left|\partial \bar{\Omega}_{a}\right|=2 \pi \sqrt{2 R} \varepsilon^{3 / 2}$.
(Guerrier et al., MMS, 2015)

Small hole on a sphere:

$$
\tau=\frac{|\mathcal{S}|}{4 D a} .
$$

Surface of the hole: $\left|\partial \mathcal{S}_{a}\right|=\pi a^{2}$.
(Singer et al., J. Stat.
Phys., 2006)

Small hole at the end of a funnel-shaped cusp:

$$
\tau=\frac{|\Sigma| \sqrt{R}}{D a^{3 / 2}}
$$

Surface of the hole: $\left|\partial \Sigma_{a}\right|=\pi a^{2}$.
(Holcman et al., MMS, 2012)

The Climbing Fiber to Purkinje cell synapses

Serial Electron Microscopy section of Climbing Fiber (CF) synapses.
Blue: CF pre-synaptic terminal
Pink: Purkinje cell.
Yellow: Astrocytes.
(Xu-Friedman et al., J Neuroscience 2001.)
■ We observe several vesicles in the terminal.

- Some vesicles are docked to the pre-synaptic membrane.
- They are docked at the Active Zone, where calcium channels are also located.

Modeling the Active Zone

Active Zone: a dense region apposed to the post-synaptic neuron where calcium channels and docked vesicles are located.

Modeling the Active Zone

Active Zone: a dense region apposed to the post-synaptic neuron where calcium channels and docked vesicles are located.

■ Vesicles are spheres located on a square lattice. There radius is 20 nm . (Xu-Friedman et al., J Neuroscience 2001.)
■ Distance between vesicles: between 60 and 150 nm . (Rollenhagen et al., Cell Tissue Res 2006.)
■ Channels can be uniformly distributed or clustered.

Close to the target, the splitting probability

Close to the target, the splitting probability

Splitting probability: probability to reach the red target $\partial \bar{\Omega}_{P, a}$ before reaching the orange boundary $\partial \bar{\Omega}_{P, \text { out }}$

$$
\left\{\begin{aligned}
\Delta p_{s}(\boldsymbol{x}) & =0 \text { for } \boldsymbol{x} \in \bar{\Omega}_{P} \\
p_{s}(\boldsymbol{x}) & =1 \text { for } \boldsymbol{x} \in \partial \bar{\Omega}_{P, a} \\
p_{s}(\boldsymbol{x}) & =0 \text { for } \boldsymbol{x} \in \partial \bar{\Omega}_{P, o u t} \\
\frac{\partial p_{s}}{\partial n}(\boldsymbol{x}) & =0 \text { for } \boldsymbol{x} \in \partial \bar{\Omega}_{P} \backslash\left(\partial \bar{\Omega}_{P, a} \cup \partial \bar{\Omega}_{P, \text { out }}\right)
\end{aligned}\right.
$$

Restriction to a 2D problem

Our previous results motivate the restriction of the analysis to the domain Ω_{P} :

Restriction to a 2D problem

Our previous results motivate the restriction of the analysis to the domain Ω_{P} :

In cylindrical coordinates, we get:

Using our previous mapping method and the boundary condition at $\partial \Omega_{P, a}$ we obtain:

$$
p_{s}(r, 0)=1-A\left(1-\frac{2 R \varepsilon}{r^{2}}\right) .
$$

Numerical approximation of the splitting probability

We express the splitting probability as a function of $p_{s}(H, 0)=p(\varepsilon, R, H)$:

$$
p_{s}(r, 0)=1-\frac{1-p(\varepsilon, R, H)}{1-\frac{2 R \varepsilon}{H^{2}}}\left(1-\frac{2 R \varepsilon}{r^{2}}\right)
$$

We determine $p(\varepsilon, R, H)$ using Brownian simulations:

$\Rightarrow p(\varepsilon, R, H)=\alpha \frac{R^{2} \varepsilon}{H^{3}}, \alpha$ is fitted numerically using Matlab. We get:

$$
p_{s}^{a p p r o x}(r, 0)=1-\frac{1-9.8 \frac{R^{2} \varepsilon}{H^{3}}}{1-\frac{2 R \varepsilon}{H^{2}}}\left(1-\frac{2 R \varepsilon}{r^{2}}\right), \quad R \leq H, 0 \leq r \leq H
$$

Comparison between the splitting probability and Brownian simulations

We observe a nice agreement between Brownian simulations and the asymptotic formula:

$$
p_{s}^{a p p r o x}(r, 0)=1-\frac{1-9.8 \frac{R^{2} \varepsilon}{H^{3}}}{1-\frac{2 R \varepsilon}{H^{2}}}\left(1-\frac{2 R \varepsilon}{r^{2}}\right)
$$

for different values of H and ε :

Estimation of the vesicular release probability

We compute the probability $p_{a c t}(r, N)$ that T calcium ions bind the target, when N ions enter through a channel at distance r :

$$
p_{a c t}(r, N)=1-\sum_{k=0}^{T-1}\binom{N}{k} p_{s}(r)^{k}\left(1-p_{s}(r)\right)^{N-k} .
$$

- High crowding of vesicles is associated with high release probability.
- A synapse with high release requires a nm precision of channel location. It can be compensated by channel clustering.

Modeling calcium dynamic in the pre-synaptic terminal

The terminal is a sphere (head) connected to a cylinder (thin neck).

Calcium ions are Brownian particles.
They enter through calcium channel located at the AZ.

They can bind and unbind buffer molecules: specific proteins that regulate calcium concentration in the terminal.

They leave the terminal through calcium pumps, or through the end of the neck.

A Markov model coupled to mass action equations

■ We model the activation of the SNAREs at the Active Zone using a Markov chain, with rates that depend on the density of ions.
■ The arrival to small holes (buffers, pumps, targets) is well approximated by Poisson processes, with rates the inverse of the mean first passage time.

- It allows to derive a system of ordinary differential equations for the density of ions in the terminal

A Markov chain to describe target activation at the Active Zone

For each target i, the probabilities to have k particles bound, $p_{k}^{i}(t), 0 \leq k \leq T$ are solution of the following system of equations:

$$
\left\{\begin{array}{l}
\frac{d p_{0}^{i}(t)}{d t}=-\phi(t) p_{0}^{i}(t) \\
\frac{d p_{k}^{i}(t)}{d t}=\phi(t)\left(p_{k-1}^{i}(t)-p_{k}^{i}(t)\right) \\
\frac{d p_{T}^{i}(t)}{d t}=\phi(t) p_{T-1}^{i}(t),
\end{array}\right.
$$

and with initial conditions $p_{k}^{i}(0)=\delta_{k=0}$,
and normalization condition $\sum_{k=0}^{T} p_{k}^{i}(t)=1$.

$$
\phi(t)=\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{\text {Target }} N_{f}(t),
$$

$J^{i}\left(\boldsymbol{x}^{l}, t\right)$ represents the flux fraction of particles arriving at target i, coming from a calcium channels located at \boldsymbol{x}^{l},
$k_{\text {Target }} N_{f}(t)$ represents the binding of calcium ions coming from the terminal.

The mass action equations for the ions in the bulk

The number of free particles in the bulk N_{f} and the number of buffered ones N_{b} satisfies:

$$
\left\{\begin{aligned}
& \frac{d N_{f}}{d t}= k_{-1} N_{b}-k_{B}\left(B_{\text {tot }}-N_{b}\right) N_{f}(t)+\left(l_{V}-\sum_{l=1}^{l_{V}} p_{s}\left(x^{l}\right)\right) J(t) \\
&-\left(k_{\text {pump }} N_{p}+k_{\text {es }}+k_{\text {Target }}\left(N_{\text {Dock }}-\sum_{i=1}^{N_{\text {Dock }}} p_{T}^{i}(t)\right)\right) N_{f}(t) \\
&+T \sum_{i=1}^{N_{\text {Dock }}}\left(\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{S} N_{f}(t)\right) p_{T-1}^{i}(t) \\
& \begin{array}{l}
\text { Total number ions en- } \\
\text { of free sites. }
\end{array} \\
& \frac{d N_{b}}{d t}=-k_{-1} N_{b}+k_{B}\left(B_{t o t}-N_{b}\right) N_{f} . \\
& \text { Release of bound } \\
& \text { ins in the bulk after } \\
& \text { vesicular fusion. }
\end{aligned}\right.
$$

Parameters estimation

The arrival time of a Brownian particle to a small target is well approximated by a Poisson process, with rate the inverse of the mean first time ($k_{X}=\frac{1}{\tau_{X}}$).
(Schuss et al., PNAS 2007)

- Mean binding time to a buffer:

$$
\bar{\tau}_{B}=\frac{\left|\Omega_{h}\right|}{4 \pi\left(D+D_{B}\right) r_{b u f f}} . \quad \text { (Holcman et al., SIAM Rev 2014) }
$$

- Mean escape time to a pump:

$$
\bar{\tau}_{\text {pump }}=\frac{\left|\Omega_{h}\right|}{4 D r_{\text {pump }}} . \quad \text { (Holcman et al., SIAM Rev 2014) }
$$

■ Mean escape time through the neck:

$$
\bar{\tau}_{e s}=\frac{\left|\Omega_{h}\right|}{4 D r_{\text {neck }}}+\frac{l_{\text {neck }}\left|\Omega_{h}\right|}{D \pi r_{\text {neck }}^{2}}+\frac{l_{\text {neck }}^{2}}{2 D} .
$$

- Mean binding time to a SNARE complex:

$$
\bar{\tau}_{\text {Target }}=\frac{\left|\Omega_{h}\right|}{4 \pi D \varepsilon} . \quad(\text { Guerrier et al., MMS 2015) }
$$

The unbinding rate from buffers k_{-1} is extracted from litterature.
(Meinrenken et al., J. Physiol 2003)

Distribution of release time for a uniform channel distribution

Calcium entry: for $0 \leq t \leq 5 \mathrm{~ms}$.
Outside of the AZ: mean arrival time to the SNARE Complex: $\frac{|\bar{\Omega}|}{4 \pi D \varepsilon} \approx 4 \mathrm{sec}$.
Mean time to escape the AZ: $\bar{\tau}=\frac{2 R^{2}}{D} \approx 4 \mu s$.
Mean time to bind the SNARE from the AZ: $<7 \mu s$.

Reaction-diffusion equations for calcium in the pre-synaptic terminal

The reaction-diffusion equation of the density of calcium ions $M(\boldsymbol{x}, t)$, the density of buffers with $\left(B^{(1)}\right)$ and without $\left(B^{(0)}\right)$ bound calcium ions, and the density of targets (SNARE machinery) with j bound particles $S^{(j)}$ are:

$$
\left\{\begin{aligned}
\frac{\partial M(\boldsymbol{x}, t)}{\partial t}= & D \Delta M(\boldsymbol{x}, t)-k_{0} M(\boldsymbol{x}, t) B^{(0)}(\boldsymbol{x}, t)+k_{-1} B^{(1)}(\boldsymbol{x}, t) \\
& -k_{S} M(\boldsymbol{x}, t) \sum_{j=0}^{T-1} S^{(j)}(\boldsymbol{x}, t)+T k_{S} M(\boldsymbol{x}, t) S^{(T-1)}(\boldsymbol{x}, t) \\
\frac{\partial B^{(0)}(\boldsymbol{x}, t)}{\partial t}= & D_{B} \Delta B^{(0)}(\boldsymbol{x}, t)-k_{0} M(\boldsymbol{x}, t) B^{(0)}(\boldsymbol{x}, t)+k_{-1} B^{(1)}(\boldsymbol{x}, t) \\
\frac{\partial B^{(1)}(\boldsymbol{x}, t)}{\partial t}= & D_{B} \Delta B^{(1)}(\boldsymbol{x}, t)-k_{-1} B^{(0)}(\boldsymbol{x}, t)+k_{0} M(\boldsymbol{x}, t) B^{(1)}(\boldsymbol{x}, t) \\
\frac{\partial S^{(0)}(\boldsymbol{x}, t)}{\partial t}= & -k_{S} M(\boldsymbol{x}, t) S^{(0)}(\boldsymbol{x}, t), \\
\frac{\partial S^{(j)}(\boldsymbol{x}, t)}{\partial t}= & k_{S} M(\boldsymbol{x}, t)\left[S^{(j-1)}(\boldsymbol{x}, t)-S^{(j)}(\boldsymbol{x}, t)\right], j=1 . . T-1 \\
\frac{\partial S^{(T)}(\boldsymbol{x}, t)}{\partial t}= & k_{S} M(\boldsymbol{x}, t) S^{(T-1)}(\boldsymbol{x}, t) .
\end{aligned}\right.
$$

\Rightarrow Analytical and numerical difficulties due to the particular organization of the Active Zone.

How to choose Δt for Brownian simulations

Funnel-shaped cusp

Model of target site organization at the AZ

Probability that a particle reaches a target
 before leaving the boundary layer on an infinite AZ full of vesicles, starting from \boldsymbol{x} :

$$
p_{s}(\boldsymbol{x})=1-\frac{1-9.8 \frac{r_{v e s}^{2} \varepsilon}{H^{3}}}{1-\frac{2 r_{v e s} \varepsilon}{H^{2}}}\left(1-\frac{2 r_{v e s} \varepsilon}{r(\boldsymbol{x})^{2}}\right) .
$$

We estimate using Brownian simulations the probability $q(\boldsymbol{x}, i)$ to reach specifically target i, and fit the results using Matlab.

Flux fraction to vesicle i coming from a channel at $\boldsymbol{x}: J^{i}(\boldsymbol{x}, t)=J(t) p_{s}(\boldsymbol{x}) q(\boldsymbol{x}, i)$.

A Markov chain to describe target activation at the AZ

Transition probability from $k-1$ to k bound particles, for l_{V} channels located at $\left(\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{l_{V}}\right)$:

$$
\begin{aligned}
\operatorname{Pr}^{i}\left\{k, t+\Delta t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right\}= & \operatorname{Pr}^{i}\left\{k-1, t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right\} \phi\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) \Delta t \\
& +\operatorname{Pr}^{i}\left\{k, t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right\}\left(1-\phi\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) \Delta t\right),
\end{aligned}
$$

where $\phi\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l}{ }^{l}\right)=\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{S} N_{f}(t)$ is the flux of particles arriving to the target.

For each target i, the Markov chain for $p_{k}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)=\operatorname{Pr}^{i}\left\{k, t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right\}$ is

$$
\left\{\begin{array}{l}
\frac{d p_{0}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)}{d t}=-\phi\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) p_{0}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) \\
\frac{d p_{k}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)}{d t}=\phi\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)\left(p_{k-1}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)-p_{k}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)\right) \\
\frac{d p_{T}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)}{d t}=\phi\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) p_{T-1}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right),
\end{array}\right.
$$

with initial conditions $p_{k}^{i}\left(0, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{l_{V}}\right)=\delta_{k=0}$,
and normalization condition $\sum_{k=0}^{T} p_{k}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)=1$.

The mass action equations for the ions in the bulk

The number of free particles in the bulk N_{f} and the number of buffered ones N_{b} satisfies:

$$
\left\{\begin{aligned}
\frac{d N_{f}}{d t}= & k_{-1} N_{b}-k_{0}\left(B_{t o t}-N_{b}\right) N_{f}(t)+\left(l_{V}-\sum_{l=1}^{l_{V}} p_{s}\left(x^{l}\right)\right) J(t) \quad \begin{array}{c}
\text { Influx of ions en- } \\
\text { tering the bulk }
\end{array} \\
& -\left(k_{p} N_{p}+k_{a}+k_{S}\left(N_{\text {Dock }}-\sum_{i=1}^{N_{\text {Dock }}} p_{T}^{i}\left(t, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{\left.l_{V}\right)}\right)\right) N_{f}(t) \quad \begin{array}{c}
\text { Total number } \\
\text { of free sites. }
\end{array}\right. \\
& +T \sum_{i=1}^{N_{\text {Dock }}}\left(\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{S} N_{f}(t)\right) p_{T-1}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) \\
\frac{d N_{b}}{d t}= & -k_{-1} N_{b}+k_{0}\left(B_{t o t}-N_{b}\right) N_{f} .
\end{aligned}\right.
$$

Probability density function $f_{\tau_{T}^{i}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{l} V}$ of the release time for target i, τ_{T}^{i} :

$$
f_{\tau_{T}^{i}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{l} V}(t)=\frac{d p_{T}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)}{d t}=\left(\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{S} N_{f}(t)\right) p_{T-1}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)
$$

$\Rightarrow T \sum_{i=1}^{N_{\text {Dock }}}\left(\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{S} N_{f}(t)\right) p_{T-1}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l}{ }^{l}\right)$: release of bound ions in the bulk after a vesicular release event.

The mass action equations for the ions in the bulk

The number of free particles in the bulk N_{f} and the number of buffered ones N_{b} satisfies:

$$
\left\{\begin{aligned}
\frac{d N_{f}}{d t}= & k_{-1} N_{b}-k_{0}\left(B_{t o t}-N_{b}\right) N_{f}(t)+\left(l_{V}-\sum_{l=1}^{l_{V}} p_{s}\left(x^{l}\right)\right) J(t) \quad \begin{array}{c}
\text { Influx of ions en- } \\
\text { tering the bulk }
\end{array} \\
& -\left(k_{p} N_{p}+k_{a}+k_{S}\left(N_{\text {Dock }}-\sum_{i=1}^{N_{\text {Dock }}} p_{T}^{i}\left(t, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{\left.l_{V}\right)}\right)\right) N_{f}(t) \quad \begin{array}{c}
\text { Total number } \\
\text { of free sites. }
\end{array}\right. \\
& +T \sum_{i=1}^{N_{\text {Dock }}}\left(\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{S} N_{f}(t)\right) p_{T-1}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) \\
\frac{d N_{b}}{d t}= & -k_{-1} N_{b}+k_{0}\left(B_{t o t}-N_{b}\right) N_{f} .
\end{aligned}\right.
$$

Probability density function $f_{\tau_{T}^{i}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{l} V}$ of the release time for target i, τ_{T}^{i} :

$$
f_{\tau_{T}^{i}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{l} V}(t)=\frac{d p_{T}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)}{d t}=\left(\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{S} N_{f}(t)\right) p_{T-1}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)
$$

$\Rightarrow T \sum_{i=1}^{N_{\text {Dock }}}\left(\sum_{l=1}^{l_{V}} J^{i}\left(\boldsymbol{x}^{l}, t\right)+k_{S} N_{f}(t)\right) p_{T-1}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l}{ }^{l}\right)$: release of bound ions in the bulk after a vesicular release event.

Solving the coupled Markov equations

For each target i, and a channel distribution $\left(\boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l}{ }^{l}\right)$, the flux of arriving particle is

$$
g^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)=\sum_{l=1}^{l_{V}} p_{s}\left(\boldsymbol{x}^{l}\right) q\left(\boldsymbol{x}^{l}, i\right) J(t)+k_{S} N_{f}(t) .
$$

Probability to have k bound ions at target i at time $t(0 \leq k \leq T-1$.):

$$
p_{k}^{i}\left(t, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{l_{V}}\right)=\frac{1}{k!}\left(\int_{t_{0}}^{t} g^{i}\left(u, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) d u\right)^{k} \exp \left(-\int_{t_{0}}^{t} g^{i}\left(u, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) d u\right) .
$$

Distribution of release time:

$$
p_{T}^{i}\left(t, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right)=\exp \left(-\int_{t_{0}}^{t} g^{i}\left(u, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) d u\right) \sum_{k \geq T} \frac{1}{k!}\left(\int_{t_{0}}^{t} g^{i}\left(u, \boldsymbol{x}^{1}, . ., \boldsymbol{x}^{l_{V}}\right) d u\right)^{k} .
$$

Brownian simulations

Ion trajectories are modeled as independent Brownian particles:

$$
\dot{\boldsymbol{X}}_{k}=\sqrt{2 D} \dot{\boldsymbol{w}}_{k}, \text { for } k=1 . . N,
$$

simulated using the Euler scheme: $X(t+\Delta t)=X(t)+\sqrt{2 D \Delta t} \xi, \xi \sim \mathcal{N}(0,1)$.

- Particles are reflected on the boundary according
 to the classical Snell-Descartes reflection principle.
- Absorbing part of the boundary: the end of the neck and the pumps.
- Binding on buffers: when the particle hits the small sphere $\partial B\left(r_{b u f f}\right)$.
Unbinding probability:
$P\left(\tau_{u b} \in[t, t+\Delta t]\right) \approx k_{-1} \Delta t$.
- AZ organization: as previously described. Influx of ions: calcium current computed using a Hodgkin-Huxley model.
Release of a vesicle: T particles bound to the target trigger vesicular fusion.
\Rightarrow The small holes require a very small time step for simulations, which leads to never ending simulations.

Application: mean time to bind the SNARE complex.

Outside of the boundary layer:
Mean arrival time of a Brownian particle to the SNARE Complex:

$$
\tau=\frac{|\bar{\Omega}|}{4 \pi D \varepsilon} \approx 4 \mathrm{sec},
$$

with:
■ Calcium diffusion coefficient $D=20 \mu m^{2} . s^{-1}$ (Biess et al., PLoS Comput. Biol., 2011)
■ Volume of the pre-synaptic terminal $|\bar{\Omega}|=1 \mu m^{3}$ (Xu-Friedman et al., J. Neurosci., 2001)
■ Height of the ribbon $\varepsilon=0.001 \mu \mathrm{~m}$.
In the boundary layer:

Mean time spent in the boundary layer: $\bar{\tau}=\frac{\left(2 r_{v e s}\right)^{2}}{2 D} \approx 410^{-3} \mathrm{~ms}$.
Mean time to bind the target $<710^{-3} \mathrm{~ms}$.

Distribution of ions on targets at the end of the transient regime, for a uniform channel distribution

Fraction of ions coming from one channel, reaching a target :

$$
\begin{aligned}
F_{\text {ions }} & =\int_{S_{A Z}} p_{s}(\boldsymbol{x}) q(\boldsymbol{x}, i) f(\boldsymbol{x}) d \boldsymbol{x} \\
& =\frac{r_{\text {ves }} \varepsilon}{N_{\text {Dock }} H^{2}}\left[\pi \ln \left(\frac{2 H}{\sqrt{2 r_{v e s} \varepsilon}}\right)+\left(\frac{9.8 r_{v e s}}{H}-2(K+1)\right)\right]+O\left(\varepsilon^{2} \ln (\varepsilon)\right) .
\end{aligned}
$$

Mean probability that k particles are bound at time $t, 0 \leq k \leq T-1$

$$
p_{k}^{i}(t)=\int_{S_{A Z}^{l} l_{V}} \frac{1}{k!}\left(\int_{t_{0}}^{t} g^{i}(u, \overrightarrow{\boldsymbol{x}}) d u\right)^{k} \exp \left(-\int_{t_{0}}^{t} g^{i}(u, \overrightarrow{\boldsymbol{x}}) d u\right) f(\overrightarrow{\boldsymbol{x}}) d \boldsymbol{x}^{1} \ldots d \boldsymbol{x}^{l} V
$$

