Asymptotic analysis for vesicular release at neuronal synapses

Claire Guerrier Applied Mathematics and Computational Biology, École Normale Supérieure

Séminaire Les probabilités de demain

May 17th, 2016

2 Asymptotic analysis of the narrow escape problem at a cusp

2 Asymptotic analysis of the narrow escape problem at a cusp

Functional organization of chemical synapses

 10^{11} neurons in the human brain, each containing 10^3 synapses.

Modeling SNARE complex activation by calcium ions

Modeling SNARE complex activation by calcium ions

- Calcium ions: Brownian particles.
- Docked vesicle: a sphere tangent to the surface of the Active Zone.
- Binding on the SNARE Complex: a particle reaches the red cylinder between the vesicle and the pre-synaptic membrane.

2 Asymptotic analysis of the narrow escape problem at a cusp

The narrow escape problem in a cusp

A Brownian particle is described by the stochastic equation

$$\dot{\boldsymbol{X}} = \sqrt{2D} \dot{\boldsymbol{w}}.$$

The first time to exit the domain $\overline{\Omega}$ through the small hole $\partial \overline{\Omega}_a$, starting from x is

$$\tau(\boldsymbol{x}) = \inf\{t > 0; \boldsymbol{X}(t) \notin \bar{\Omega} | \boldsymbol{X}(0) = \boldsymbol{x} \in \bar{\Omega}\}.$$

The mean first passage time

$$u(\boldsymbol{x}) = \mathbb{E}(\tau(\boldsymbol{x}))$$

is the solution of the mixed boundary value problem

$$egin{aligned} & D\Delta u(m{x}) = -1 ext{ for } m{x} \in ar{\Omega} \ & rac{\partial u}{\partial n}(m{x}) = 0 ext{ for } m{x} \in \partial ar{\Omega} \setminus \partial ar{\Omega}_a \ & u(m{x}) = 0 ext{ for } m{x} \in \partial ar{\Omega}_a, \end{aligned}$$

where $|\partial \bar{\Omega}_a| \ll |\partial \bar{\Omega}|$.

(Dynkin, 1961)

Reduction to a 2D problem

The problem is independent of θ in cylindrical coordinates $\boldsymbol{x} = (r, \theta, z)$. It is equivalent to the following problem in Ω :

Reduction to a 2D problem

The problem is independent of θ in cylindrical coordinates $\boldsymbol{x} = (r, \theta, z)$. It is equivalent to the following problem in Ω :

$$\begin{aligned} & \frac{\partial \Omega_a}{\partial \mathbf{r}^2} = \varepsilon \ll R_1, \\ & \mathbf{R}_2 \cdot \mathbf{\Omega} \\ & \mathbf{R}_2 \cdot \mathbf{\Omega} \\ & \mathbf{R}_1 \cdot \mathbf{R}_2 - \mathbf{\Omega}_1 \\ & \mathbf{R}_1 - \mathbf{R}_1 \cdot \mathbf{R}_1 \\ & \mathbf{R}_1 - \mathbf{R}_1 - \mathbf{R}_1 - \mathbf{R}_1 \\ & \mathbf{R}_1 \\ & \mathbf{R}_1 \\ & \mathbf{R}_1 \\ & \mathbf{R}_1 - \mathbf{R}_1 \\ & \mathbf{R$$

AZ.

Asymptotic analysis of the narrow escape problem at a cusp

Conformal mapping of domain Ω

Boundary value problem for v(s,t) = u(r,z), where $f(r+iz) = \frac{1}{r+iz} = s + it$:

The inner solution near the absorbing boundary

Scaling:

$$\begin{aligned} \zeta &= s\sqrt{2R\varepsilon} = s\sqrt{\tilde{\varepsilon}}, \quad \left(R = \frac{R_1R_2}{R_2 - R_1}\right) \\ Y(\zeta, t) &= v(s, t), \end{aligned}$$

and a regular expansion of Y in power of $\tilde{\varepsilon}$

$$Y(\zeta, t) = Y_0(\zeta, t) + \tilde{\varepsilon}Y_1(\zeta, t) + \tilde{\varepsilon}^2 Y_2(\zeta, t) + \dots$$

gives the expansion for the equation in the mapped domain:

$$\frac{1}{\tilde{\varepsilon}^2} \left[\zeta^4 \frac{\partial^2 Y_0}{\partial t^2} \right] + \frac{1}{\tilde{\varepsilon}} \left[\zeta^4 \frac{\partial^2 Y_1}{\partial t^2} + \zeta^4 \frac{\partial^2 Y_0}{\partial \zeta^2} + 2\zeta^2 t^2 \frac{\partial^2 Y_0}{\partial t^2} - \zeta^3 \frac{\partial Y_0}{\partial \zeta} + 2\zeta^2 t \frac{\partial Y_0}{\partial t} \right] = O(1).$$

The inner solution near the absorbing boundary

Scaling:

$$\begin{split} \zeta &= s\sqrt{2R\varepsilon} = s\sqrt{\tilde{\varepsilon}}, \quad \left(R = \frac{R_1R_2}{R_2 - R_1}\right) \\ &Y(\zeta,t) = v(s,t), \end{split}$$

and a regular expansion of Y in power of $\widetilde{\varepsilon}$

$$Y(\zeta, t) = Y_0(\zeta, t) + \tilde{\varepsilon}Y_1(\zeta, t) + \tilde{\varepsilon}^2 Y_2(\zeta, t) + \dots$$

gives the expansion for the equation in the mapped domain:

$$\frac{1}{\tilde{\varepsilon}^2} \left[\zeta^4 \frac{\partial^2 Y_0}{\partial t^2} \right] + \frac{1}{\tilde{\varepsilon}} \left[\zeta^4 \frac{\partial^2 Y_1}{\partial t^2} + \zeta^4 \frac{\partial^2 Y_0}{\partial \zeta^2} + 2\zeta^2 t^2 \frac{\partial^2 Y_0}{\partial t^2} - \zeta^3 \frac{\partial Y_0}{\partial \zeta} + 2\zeta^2 t \frac{\partial Y_0}{\partial t} \right] = O(1).$$

Leading order term $O(\tilde{\varepsilon}^{-2})$: Using the boundary conditions,

$$\frac{\partial Y_0}{\partial t}(\zeta, t) = 0.$$

The inner solution near the absorbing boundary

Scaling:

$$\begin{split} \zeta &= s\sqrt{2R\varepsilon} = s\sqrt{\tilde{\varepsilon}}, \quad \left(R = \frac{R_1R_2}{R_2 - R_1}\right) \\ &Y(\zeta,t) = v(s,t), \end{split}$$

and a regular expansion of Y in power of $\tilde{\varepsilon}$

$$Y(\zeta, t) = Y_0(\zeta, t) + \tilde{\varepsilon}Y_1(\zeta, t) + \tilde{\varepsilon}^2 Y_2(\zeta, t) + \dots$$

gives the expansion for the equation in the mapped domain:

$$\frac{1}{\tilde{\varepsilon}^2} \left[\zeta^4 \frac{\partial^2 Y_0}{\partial t^2} \right] + \frac{1}{\tilde{\varepsilon}} \left[\zeta^4 \frac{\partial^2 Y_1}{\partial t^2} + \zeta^4 \frac{\partial^2 Y_0}{\partial \zeta^2} + 2\zeta^2 t^2 \frac{\partial^2 Y_0}{\partial t^2} - \zeta^3 \frac{\partial Y_0}{\partial \zeta} + 2\zeta^2 t \frac{\partial Y_0}{\partial t} \right] = O(1).$$

Second order term $O(\tilde{\varepsilon}^{-1})$:

Leading order term $O(\tilde{\varepsilon}^{-2})$: Using the boundary conditions,

$$\frac{\partial Y_0}{\partial t}(\zeta, t) = 0.$$

Integrating over $t \ {\rm and} \ {\rm using} \ {\rm the} \ {\rm boundary} \ {\rm conditions}, \ {\rm we} \ {\rm obtain}$

$$Y_0(\zeta) = A\left(1 - \zeta^2\right),\,$$

 $\zeta^4 \frac{\partial^2 Y_1(\zeta, t)}{\partial t^2} + \zeta^4 \frac{\partial^2 Y_0(\zeta)}{\partial \zeta^2} - \zeta^3 \frac{\partial Y_0(\zeta)}{\partial \zeta} = 0.$

and

$$v(s,t) = A\left(1 - s^2\tilde{\varepsilon}\right).$$

7/10

Computation of A using the divergence theorem

$$v(s,t) = A\left(1 - 2R\varepsilon s^2\right).$$

The constant A is determined from the divergence theorem

$$\int_{\bar{\Omega}} \Delta u = \int_{\partial \bar{\Omega}} \frac{\partial u}{\partial n}$$
$$-\frac{|\bar{\Omega}|}{D} = \int_{\bar{\Omega}} \Delta u = \int_{\partial \bar{\Omega}} \frac{\partial u}{\partial n} = 2\pi \sqrt{2R\varepsilon} \int_{0}^{\varepsilon} \frac{\partial u}{\partial r} dz = -4\pi A\varepsilon.$$

Thus

$$A = \frac{|\Omega|}{4\pi D\varepsilon}$$

The leading order term of the mean first passage time outside of the boundary layer is obtained by setting s = 0. It is independent of the initial position:

$$\tau = \frac{|\overline{\Omega}|}{4\pi D\varepsilon}.$$

In the boundary layer, the leading order term of the mean first passage time is:

$$v(s,t) = \frac{|\bar{\Omega}|}{4\pi D\varepsilon} \left(1 - 2R\varepsilon s^2\right).$$

Summary

- We computed the leading order term of the mean first passage time to a small ribbon located between two tangent spheres.
- The mean first passage time is constant outside of a boundar layer near the cusp, and is well approximated by a Poisson process. (Schuss et al., PNAS 2007)

Next steps of the project:

- We built a model of the Active Zone, and investigated the influence of channels and vesicular organization on the release probability.
- We combined our previous result on the mean first passage time and the model of the Active Zone to build a model of the pre-synaptic terminal.
- This approach allows us to replace a model initially described using a system of PDE, with a system of ODE coupled to a Markov chain.
- We could the realize fast stochastic simulations using a Gillespie algorithm.

Acknowledgements

IBENS

David Holcman Jurgen Reingruber Jing Yang Assaf Amitai Nathanael Hozé Khanh Dao Duc Jérôme Cartailler Ofir Shukron Pierre Parutto

Comparison with MFPT in other geometries

$$\tau = \frac{|\bar{\Omega}|}{4\pi D\varepsilon}$$

Surface of the hole: $|\partial \bar{\Omega}_a| = 2\pi \sqrt{2R} \varepsilon^{3/2}$. (Guerrier et al., *MMS*, 2015)

Small hole on a sphere:

$$\tau = \frac{|\mathcal{S}|}{4Da}.$$

Surface of the hole: $|\partial S_a| = \pi a^2$.

(Singer et al., J. Stat. Phys., 2006)

Small hole at the end of a funnel-shaped cusp:

$$\tau = \frac{|\Sigma|\sqrt{R}}{Da^{3/2}}.$$

Surface of the hole: $|\partial \Sigma_a| = \pi a^2$.

(Holcman et al., *MMS*, 2012)

The Climbing Fiber to Purkinje cell synapses

Serial Electron Microscopy section of Climbing Fiber (CF) synapses. Blue: CF pre-synaptic terminal Pink: Purkinje cell. Yellow: Astrocytes. (Xu-Friedman et al., J Neuroscience 2001.)

- We observe several vesicles in the terminal.
- Some vesicles are docked to the pre-synaptic membrane.
- They are docked at the Active Zone, where calcium channels are also located.

Modeling the Active Zone

Active Zone: a dense region apposed to the post-synaptic neuron where calcium channels and docked vesicles are located.

Modeling the Active Zone

Active Zone: a dense region apposed to the post-synaptic neuron where calcium channels and docked vesicles are located.

- Vesicles are spheres located on a square lattice. There radius is 20 nm. (Xu-Friedman et al., J Neuroscience 2001.)
- Distance between vesicles: between 60 and 150 nm. (Rollenhagen et al., Cell Tissue Res 2006.)
- Channels can be uniformly distributed or clustered.

Close to the target, the splitting probability

Close to the target, the splitting probability

Splitting probability: probability to reach the red target $\partial \bar{\Omega}_{P,a}$ before reaching the orange boundary $\partial \bar{\Omega}_{P,out}$

$$\begin{cases} \Delta p_s(\boldsymbol{x}) = 0 \text{ for } \boldsymbol{x} \in \bar{\Omega}_P \\ p_s(\boldsymbol{x}) = 1 \text{ for } \boldsymbol{x} \in \partial \bar{\Omega}_{P,a} \\ p_s(\boldsymbol{x}) = 0 \text{ for } \boldsymbol{x} \in \partial \bar{\Omega}_{P,out} \\ \frac{\partial p_s}{\partial n}(\boldsymbol{x}) = 0 \text{ for } \boldsymbol{x} \in \partial \bar{\Omega}_P \setminus \left(\partial \bar{\Omega}_{P,a} \cup \partial \bar{\Omega}_{P,out}\right). \end{cases}$$

Restriction to a 2D problem

Our previous results motivate the restriction of the analysis to the domain Ω_P :

Restriction to a 2D problem

Our previous results motivate the restriction of the analysis to the domain Ω_P :

Using our previous mapping method and the boundary condition at $\partial \Omega_{P,a}$ we obtain:

$$p_s(r,0) = 1 - A\left(1 - \frac{2R\varepsilon}{r^2}\right).$$

Numerical approximation of the splitting probability

We express the splitting probability as a function of $p_s(H,0) = p(\varepsilon, R, H)$:

$$p_s(r,0) = 1 - \frac{1 - p(\varepsilon, R, H)}{1 - \frac{2R\varepsilon}{H^2}} \left(1 - \frac{2R\varepsilon}{r^2}\right).$$

We determine $p(\varepsilon, R, H)$ using Brownian simulations:

 $\Rightarrow p(\varepsilon,R,H) = \alpha \frac{R^2 \varepsilon}{H^3}, \, \alpha$ is fitted numerically using Matlab. We get:

$$p_s^{approx}(r,0) = 1 - \frac{1 - 9.8 \frac{R^2 \varepsilon}{H^3}}{1 - \frac{2R\varepsilon}{H^2}} \left(1 - \frac{2R\varepsilon}{r^2}\right), \quad R \le H, \ 0 \le r \le H.$$

Comparison between the splitting probability and Brownian simulations

We observe a nice agreement between Brownian simulations and the asymptotic formula:

$$p_s^{approx}(r,0) = 1 - \frac{1 - 9.8 \frac{R^2 \varepsilon}{H^3}}{1 - \frac{2R\varepsilon}{H^2}} \left(1 - \frac{2R\varepsilon}{r^2}\right),$$

for different values of H and ε :

Estimation of the vesicular release probability

We compute the probability $p_{act}(r, N)$ that T calcium ions bind the target, when N ions enter through a channel at distance r:

$$p_{act}(r,N) = 1 - \sum_{k=0}^{T-1} {N \choose k} p_s(r)^k (1 - p_s(r))^{N-k}$$

- High crowding of vesicles is associated with high release probability.
- A synapse with high release requires a nm precision of channel location. It can be compensated by channel clustering.

Modeling calcium dynamic in the pre-synaptic terminal

The terminal is a sphere (head) connected to a cylinder (thin neck).

Calcium ions are Brownian particles.

They enter through calcium channel located at the AZ.

They can bind and unbind buffer molecules: specific proteins that regulate calcium concentration in the terminal.

They leave the terminal through calcium pumps, or through the end of the neck.

A Markov model coupled to mass action equations

• We model the activation of the SNAREs at the Active Zone using a Markov chain, with rates that depend on the density of ions.

- The arrival to small holes (buffers, pumps, targets) is well approximated by Poisson processes, with rates the inverse of the mean first passage time.
- It allows to derive a system of ordinary differential equations for the density of ions in the terminal

A Markov chain to describe target activation at the Active Zone

For each target i, the probabilities to have k particles bound, $p_k^i(t)$, $0 \le k \le T$ are solution of the following system of equations:

$$\begin{cases} \frac{dp_0^{i}(t)}{dt} = -\phi(t)p_0^{i}(t) \\ \frac{dp_k^{i}(t)}{dt} = \phi(t)\left(p_{k-1}^{i}(t) - p_k^{i}(t)\right) \\ \frac{dp_T^{i}(t)}{dt} = \phi(t)p_{T-1}^{i}(t), \end{cases}$$

and with initial conditions $p_k^i(0) = \delta_{k=0},$ and normalization condition $\sum_{k=0}^T p_k^i(t) = 1.$

$$\phi(t) = \sum_{l=1}^{l_V} J^i(\boldsymbol{x}^l, t) + k_{Target} N_f(t),$$

 $J^i({\bm x}^l,t)$ represents the flux fraction of particles arriving at target i, coming from a calcium channels located at ${\bm x}^l,$

 $k_{Target}N_f(t)$ represents the binding of calcium ions coming from the terminal.

The mass action equations for the ions in the bulk

The number of free particles in the bulk N_{f} and the number of buffered ones N_{b} satisfies:

$$\begin{cases} \frac{dN_f}{dt} = k_{-1}N_b - k_B(B_{tot} - N_b)N_f(t) + \left(l_V - \sum_{l=1}^{l_V} p_s(x^l)\right)J(t) & \text{Influx of ions entering the bulk} \\ - \left(k_{pump}N_p + k_{es} + k_{Target}\left(N_{Dock} - \sum_{i=1}^{N_{Dock}} p_T^i(t)\right)\right)N_f(t) & \text{Total number of free sites.} \\ + T \sum_{i=1}^{N_{Dock}} \left(\sum_{l=1}^{l_V} J^i(x^l, t) + k_S N_f(t)\right)p_{T-1}^i(t) & \text{Release of bound ions in the bulk after vesicular fusion.} \end{cases}$$

Parameters estimation

The arrival time of a Brownian particle to a small target is well approximated by a Poisson process, with rate the inverse of the mean first time $(k_X = \frac{1}{\bar{\tau}_X})$. (Schuss et al., PNAS 2007)

Mean binding time to a buffer:

$$\bar{\tau}_B = \frac{|\Omega_h|}{4\pi (D+D_B)r_{buff}}.$$

(Holcman et al., SIAM Rev 2014)

Mean escape time to a pump:

$$ar{ au}_{pump} = rac{|\Omega_h|}{4Dr_{pump}}.$$
 (Holcman et al., SIAM Rev 2014)

Mean escape time through the neck:

$$\bar{\tau}_{es} = \frac{|\Omega_h|}{4Dr_{neck}} + \frac{l_{neck}|\Omega_h|}{D\pi r_{neck}^2} + \frac{l_{neck}^2}{2D}. \qquad (\text{Holcman et al., SIAM Rev 2014})$$

Mean binding time to a SNARE complex:

$$ar{ au}_{Target} = rac{|\Omega_h|}{4\pi Darepsilon}.$$
 (Guerrier et al., MMS 2015)

The unbinding rate from buffers k_{-1} is extracted from litterature. (*Meinrenken et al., J. Physiol* 2003)

Distribution of release time for a uniform channel distribution

Calcium entry: for $0 \le t \le 5$ ms.

Outside of the AZ: mean arrival time to the SNARE Complex: $\frac{|\bar{\Omega}|}{4\pi D\varepsilon} \approx 4 \sec$. Mean time to escape the AZ: $\bar{\tau} = \frac{2R^2}{D} \approx 4\mu s$. Mean time to bind the SNARE from the AZ: $< 7\mu s$.

Reaction-diffusion equations for calcium in the pre-synaptic terminal

The reaction-diffusion equation of the density of calcium ions $M(\boldsymbol{x},t)$, the density of buffers with $(B^{(1)})$ and without $(B^{(0)})$ bound calcium ions, and the density of targets (SNARE machinery) with j bound particles $S^{(j)}$ are:

$$\begin{split} \frac{\partial M(\boldsymbol{x},t)}{\partial t} = & D\Delta M(\boldsymbol{x},t) - k_0 M(\boldsymbol{x},t) B^{(0)}(\boldsymbol{x},t) + k_{-1} B^{(1)}(\boldsymbol{x},t) \\ & - k_S M(\boldsymbol{x},t) \sum_{j=0}^{T-1} S^{(j)}(\boldsymbol{x},t) + T k_S M(\boldsymbol{x},t) S^{(T-1)}(\boldsymbol{x},t) \\ \frac{\partial B^{(0)}(\boldsymbol{x},t)}{\partial t} = & D_B \Delta B^{(0)}(\boldsymbol{x},t) - k_0 M(\boldsymbol{x},t) B^{(0)}(\boldsymbol{x},t) + k_{-1} B^{(1)}(\boldsymbol{x},t) \\ \frac{\partial B^{(1)}(\boldsymbol{x},t)}{\partial t} = & D_B \Delta B^{(1)}(\boldsymbol{x},t) - k_{-1} B^{(0)}(\boldsymbol{x},t) + k_0 M(\boldsymbol{x},t) B^{(1)}(\boldsymbol{x},t) \\ \frac{\partial S^{(0)}(\boldsymbol{x},t)}{\partial t} = & - k_S M(\boldsymbol{x},t) S^{(0)}(\boldsymbol{x},t), \\ \frac{\partial S^{(j)}(\boldsymbol{x},t)}{\partial t} = & k_S M(\boldsymbol{x},t) \left[S^{(j-1)}(\boldsymbol{x},t) - S^{(j)}(\boldsymbol{x},t) \right], j = 1..T-1 \\ \frac{\partial S^{(T)}(\boldsymbol{x},t)}{\partial t} = & k_S M(\boldsymbol{x},t) S^{(T-1)}(\boldsymbol{x},t). \end{split}$$

 \Rightarrow Analytical and numerical difficulties due to the particular organization of the Active Zone.

How to choose Δt for Brownian simulations

Funnel-shaped cusp

Model of target site organization at the AZ

Probability that a particle reaches a target before leaving the boundary layer on an infinite AZ full of vesicles, starting from x:

$$p_s(\boldsymbol{x}) = 1 - rac{1 - 9.8 rac{r_{ves}^2 arepsilon}{H^3}}{1 - rac{2r_{ves}arepsilon}{H^2}} \left(1 - rac{2r_{ves}arepsilon}{r(\boldsymbol{x})^2}
ight).$$

We estimate using Brownian simulations the probability q(x, i) to reach specifically target i, and fit the results using Matlab.

Flux fraction to vesicle *i* coming from a channel at \boldsymbol{x} : $J^{i}(\boldsymbol{x},t) = J(t)p_{s}(\boldsymbol{x})q(\boldsymbol{x},i)$.

A Markov chain to describe target activation at the AZ

Transition probability from k-1 to k bound particles, for l_V channels located at $(x^1, ..., x^{l_V})$:

$$Pr^{i}\{k, t + \Delta t, \boldsymbol{x}^{1}, .., \boldsymbol{x}^{l_{V}}\} = Pr^{i}\{k - 1, t, \boldsymbol{x}^{1}, .., \boldsymbol{x}^{l_{V}}\}\phi(t, \boldsymbol{x}^{1}, .., \boldsymbol{x}^{l_{V}})\Delta t + Pr^{i}\{k, t, \boldsymbol{x}^{1}, .., \boldsymbol{x}^{l_{V}}\}\left(1 - \phi(t, \boldsymbol{x}^{1}, .., \boldsymbol{x}^{l_{V}})\Delta t\right),$$

where $\phi(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) = \sum_{l=1}^{l_V} J^i(\boldsymbol{x}^l, t) + k_S N_f(t)$ is the flux of particles arriving to the target.

For each target i, the Markov chain for $p_k^i(t, {\bm x}^1,.., {\bm x}^{l_V}) = Pr^i\{k,t, {\bm x}^1,.., {\bm x}^{l_V}\}$ is

$$\begin{split} & \frac{dp_0^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V})}{dt} = -\phi(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) p_0^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) \\ & \frac{dp_k^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V})}{dt} = \phi(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) \left(p_{k-1}^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) - p_k^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) \right) \\ & \frac{dp_T^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V})}{dt} = \phi(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) p_{T-1}^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}), \end{split}$$

with initial conditions $p_k^i(0, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) = \delta_{k=0}$, and normalization condition $\sum_{k=0}^T p_k^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) = 1$.

The mass action equations for the ions in the bulk

4

The number of free particles in the bulk N_f and the number of buffered ones N_b satisfies:

$$\begin{cases} \frac{dN_f}{dt} = k_{-1}N_b - k_0(B_{tot} - N_b)N_f(t) + \left(l_V - \sum_{l=1}^{l_V} p_s(x^l)\right)J(t) & \text{Influx of ions entering the bulk} \\ - \left(k_pN_p + k_a + k_S\left(N_{Dock} - \sum_{i=1}^{N_{Dock}} p_T^i(t, \boldsymbol{x}^1, ..., \boldsymbol{x}^{l_V})\right)\right)N_f(t) & \text{Total number} \\ + T\sum_{i=1}^{N_{Dock}} \left(\sum_{l=1}^{l_V} J^i(\boldsymbol{x}^l, t) + k_SN_f(t)\right)p_{T-1}^i(t, \boldsymbol{x}^1, ..., \boldsymbol{x}^{l_V}) \\ \frac{dN_b}{dt} = -k_{-1}N_b + k_0(B_{tot} - N_b)N_f. \end{cases}$$

Probability density function $f_{\tau_T^i, \boldsymbol{x}^1, ..., \boldsymbol{x}^{l_V}}$ of the release time for target i, τ_T^i :

$$f_{\tau_{T}^{i},\boldsymbol{x}^{1},...,\boldsymbol{x}^{l_{V}}}(t) = \frac{dp_{T}^{i}(t,\boldsymbol{x}^{1},..,\boldsymbol{x}^{l_{V}})}{dt} = \left(\sum_{l=1}^{l_{V}} J^{i}(\boldsymbol{x}^{l},t) + k_{S}N_{f}(t)\right)p_{T-1}^{i}(t,\boldsymbol{x}^{1},..,\boldsymbol{x}^{l_{V}})$$

 $\Rightarrow T \sum_{i=1}^{N_{Dock}} \left(\sum_{l=1}^{l_V} J^i(\boldsymbol{x}^l, t) + k_S N_f(t) \right) p_{T-1}^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}): \text{ release of bound ions in the bulk after a vesicular release event.}$

The mass action equations for the ions in the bulk

4

The number of free particles in the bulk N_f and the number of buffered ones N_b satisfies:

$$\begin{cases} \frac{dN_f}{dt} = k_{-1}N_b - k_0(B_{tot} - N_b)N_f(t) + \left(l_V - \sum_{l=1}^{l_V} p_s(x^l)\right)J(t) & \text{Influx of ions entering the bulk} \\ - \left(k_pN_p + k_a + k_S\left(N_{Dock} - \sum_{i=1}^{N_{Dock}} p_T^i(t, \boldsymbol{x}^1, ..., \boldsymbol{x}^{l_V})\right)\right)N_f(t) & \text{Total number} \\ + T\sum_{i=1}^{N_{Dock}} \left(\sum_{l=1}^{l_V} J^i(\boldsymbol{x}^l, t) + k_SN_f(t)\right)p_{T-1}^i(t, \boldsymbol{x}^1, ..., \boldsymbol{x}^{l_V}) \\ \frac{dN_b}{dt} = -k_{-1}N_b + k_0(B_{tot} - N_b)N_f. \end{cases}$$

Probability density function $f_{\tau_T^i, \boldsymbol{x}^1, ..., \boldsymbol{x}^{l_V}}$ of the release time for target i, τ_T^i :

$$f_{\tau_{T}^{i},\boldsymbol{x}^{1},...,\boldsymbol{x}^{l_{V}}}(t) = \frac{dp_{T}^{i}(t,\boldsymbol{x}^{1},..,\boldsymbol{x}^{l_{V}})}{dt} = \left(\sum_{l=1}^{l_{V}} J^{i}(\boldsymbol{x}^{l},t) + k_{S}N_{f}(t)\right)p_{T-1}^{i}(t,\boldsymbol{x}^{1},..,\boldsymbol{x}^{l_{V}})$$

 $\Rightarrow T \sum_{i=1}^{N_{Dock}} \left(\sum_{l=1}^{l_V} J^i(\boldsymbol{x}^l, t) + k_S N_f(t) \right) p_{T-1}^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}): \text{ release of bound ions in the bulk after a vesicular release event.}$

Solving the coupled Markov equations

For each target i_{r} and a channel distribution $(m{x}^1,..,m{x}^{l_V})_{\text{r}}$ the flux of arriving particle is

$$g^{i}(t, \boldsymbol{x}^{1}, .., \boldsymbol{x}^{l_{V}}) = \sum_{l=1}^{l_{V}} p_{s}(\boldsymbol{x}^{l})q(\boldsymbol{x}^{l}, i)J(t) + k_{S}N_{f}(t).$$

Probability to have k bound ions at target i at time t ($0 \le k \le T - 1$.):

$$p_k^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) = \frac{1}{k!} \left(\int_{t_0}^t g^i(u, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) du \right)^k \exp\left(- \int_{t_0}^t g^i(u, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) du \right).$$

Distribution of release time:

$$p_T^i(t, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) = \exp\left(-\int_{t_0}^t g^i(u, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) du\right) \sum_{k \ge T} \frac{1}{k!} \left(\int_{t_0}^t g^i(u, \boldsymbol{x}^1, .., \boldsymbol{x}^{l_V}) du\right)^k$$

Brownian simulations

Ion trajectories are modeled as independent Brownian particles:

$$\dot{\boldsymbol{X}}_k = \sqrt{2D} \dot{\boldsymbol{w}}_k, \text{ for } k = 1..N,$$

simulated using the Euler scheme: $X(t + \Delta t) = X(t) + \sqrt{2D\Delta t} \xi, \ \xi \sim \mathcal{N}(0, 1).$

- Particles are reflected on the boundary according to the classical Snell-Descartes reflection principle.
- Absorbing part of the boundary: the end of the neck and the pumps.
- Binding on buffers: when the particle hits the small sphere $\partial B(r_{buff})$. Unbinding probability:

$$P(\tau_{ub} \in [t, t + \Delta t]) \approx k_{-1} \Delta t.$$

 AZ organization: as previously described. Influx of ions: calcium current computed using a Hodgkin-Huxley model.

Release of a vesicle: T particles bound to the target trigger vesicular fusion.

 \Rightarrow The small holes require a very small time step for simulations, which leads to never ending simulations.

Application: mean time to bind the SNARE complex.

Outside of the boundary layer:

Mean arrival time of a Brownian particle to the SNARE Complex:

$$\tau = \frac{|\bar{\Omega}|}{4\pi D\varepsilon} \approx 4 \sec,$$

with:

- Calcium diffusion coefficient $D = 20\mu m^2 \cdot s^{-1}$ (Biess et al., *PLoS Comput. Biol.*, 2011)
- Volume of the pre-synaptic terminal $|\bar{\Omega}| = 1 \mu m^3$ (Xu-Friedman et al., J. Neurosci., 2001)
- Height of the ribbon $\varepsilon = 0.001 \mu m$.

In the boundary layer:

Mean time spent in the boundary layer: $\bar{\tau} = \frac{(2r_{ves})^2}{2D} \approx 4 \, 10^{-3} ms.$ Mean time to bind the target $< 7 \, 10^{-3} ms.$

Distribution of ions on targets at the end of the transient regime, for a uniform channel distribution

Fraction of ions coming from one channel, reaching a target :

$$\begin{split} F_{ions} &= \int_{S_{AZ}} p_s(\boldsymbol{x}) q(\boldsymbol{x}, i) f(\boldsymbol{x}) d\boldsymbol{x} \\ &= \frac{r_{ves} \varepsilon}{N_{Dock} H^2} \left[\pi \ln \left(\frac{2H}{\sqrt{2r_{ves} \varepsilon}} \right) + \left(\frac{9.8 r_{ves}}{H} - 2(K+1) \right) \right] + O(\varepsilon^2 \ln(\varepsilon)). \end{split}$$

Mean probability that k particles are bound at time t, $0 \le k \le T - 1$

$$p_k^i(t) = \int_{S_{AZ}^{l_V}} \frac{1}{k!} \left(\int_{t_0}^t g^i(u, \vec{x}) du \right)^k \exp\left(- \int_{t_0}^t g^i(u, \vec{x}) du \right) f(\vec{x}) dx^1 ... dx^{l_V},$$