Introduction				Conclusions and ongoing works
0000	000000	000	00000	

Branching Random Walks Applied to Antibody Affinity Maturation

IRENE BALELLI

SUPERVISORS: VUK MILIŠIĆ, GILLES WAINRIB

EXTERNAL PARTNERS: NADINE VARIN-BLANK'S TEAM (INSERM U978)

LAGA - University Paris 13

IHÉS - Bures-sur-Yvette - May 17, 2016

(ロ) (同) (三) (三) (三) (○) (○)

Introduction	Pure mutational models	Mutation and division	Mutation, division and selection	Conclusions and ongoing works

Contents

- Pure mutational models: random walks on graphs
- Mutation and division: 2-branching random walks
- Mutation, division and selection: multi-type Galton-Watson processes

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

5 Conclusions and ongoing works

Introduction	Pure mutational models	Mutation and division	Mutation, division and selection	Conclusions and ongoing works
Plan				

- Pure mutational models: random walks on graphs
- 3 Mutation and division: 2-branching random walks
- 4 Mutation, division and selection: multi-type Galton-Watson processes

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

6 Conclusions and ongoing works

Introd	uction
000	0

Pure mutational models

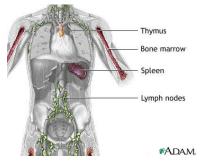
Mutation and division

Mutation, division and selection

Conclusions and ongoing works

Biological background

The immune system



The structure of the immunity system (Encyclopedia of University of Maryland Medical Center)

- The immune system:
 - innate
 - adaptative
- Production of antigen-specific antibodies:
 - assured by B-cells
 - evolutionary mutation seclection process

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Pure mutational models

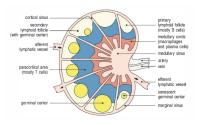
Mutation and division

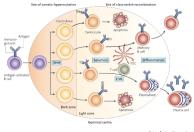
Mutation, division and selection

Conclusions and ongoing works

Biological background

The germinal center reaction





Nature Reviews | Immunology

Organization of a lymph node (Janeway's immunobiology, 2012)

The germinal center microenvironment (Germinal centres: role in B-cell physiology and malignancy, *Nature Reviews Immunology* **8**, 2008)

イロン 不得 とくほ とくほ とうほ

Pure mutational models

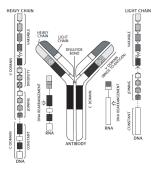
Mutation and division

Mutation, division and selection

Conclusions and ongoing works

Biological background

Somatic hypermutation



The coding and assembly of BCR molecules during somatic hypermutation (Immunology and evolution of infectious disease, 2002) • Genetic mutations on the variable region of the BCR, the antigen binding site

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

- Extremely high rate of mutation (+10⁵-10⁶)
- Random mutations

Introduction ○○○●	Pure mutational models	Mutation and division	Mutation, division and selection	Conclusions and ongoing works
Main assumptions	3			
Aim a	nd Model			

Aim :

To build a mathematical framework to investigate the interactions between division, mutation and selection

Model :

- 2 amino acid classes: 0 or 1
- BCR and antigen = *N*-length binary strings $(\mathcal{H}_N := \{0, 1\}^N)$
- Affinity = N Hamming distance between the strings
- To define a mutation rule = to define a random walk on \mathcal{H}_N

	00000	
Plan		

Pure mutational models: random walks on graphs

- 3 Mutation and division: 2-branching random walks
- 4 Mutation, division and selection: multi-type Galton-Watson processes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions and ongoing works

(a) Simple point mutations: class switch of a randomly chosen amino acid. Mathematically: Simple Random Walk on \mathcal{H}_N .

 \mathcal{P} := transition probability matrix

$$\underline{\text{ex. } N = 5:} \quad \boxed{1 \quad 1 \quad 0 \quad 0 \quad 1} \longrightarrow \boxed{1 \quad 0 \quad 0 \quad 0 \quad 1}$$

(b) Class switch of 1 or 2-length strings depending on affinity: class switch of 1 or 2 randomly chosen amino acids depending on the affinity between BCR and antigen. Mathematically: graph divided into 2 components. The one containing the antigen is accessible from the other, not conversely.

(c) Multiple point mutations: with probability a_i , *i* independent simple point mutations, $1 \le i \le k$, $k \le N$ fixed. Mathematically: two models proposed

•
$$\mathcal{P}^{(k)} := \frac{1}{k} \sum_{i=1}^{k} \mathcal{P}^{i}$$

With probability 1/k at each time step between 1 and k independent simple point mutations

•
$$\mathcal{P}^{k^*}, k^* = 2\lfloor (k+1)/2 \rfloor - 1$$

At each time step exactly k^* independent simple-point mutations

(日) (日) (日) (日) (日) (日) (日)

Definition : The expected number of steps to reach a specific node in \mathcal{H}_N , given the departure node. $\mathbb{E}_{\mathbf{x}_i}[\tau_{\{\mathbf{x}_j\}}]$, where $\tau_{\{\mathbf{x}_j\}} := \inf\{n \ge 0 \mid \mathbf{X}_n = \mathbf{x}_j\}$.

- Interpretation : The expected time we need to wait until the optimal BCR is obtained, given a particular antigen.
- **Computation :** For the mutational models introduced, we determine explicit formulas to evaluate this quantity (or at least estimations for *N* big enough).

(日) (日) (日) (日) (日) (日) (日)

Let \overline{d} be the initial Hamming distance between BCR and antigen.

Rule (a)
$$H(\overline{d}) = \sum_{d=0}^{\overline{d}-1} \frac{\sum_{j=1}^{N-1-d} C_N^{d+j} + 1}{C_{N-1}^d} \sim 2^N$$
, for N big enough

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Rule (b) $\sim 2^{N-1}$, for *N* big enough

Rule (C)
$$\overline{T}_{N}^{(k)}(\overline{d}) = \sum_{l=2}^{2^{N}} \mu_{l}^{(k)} - \frac{1}{2^{N} C_{N}^{\overline{d}}} \sum_{l=2}^{2^{N}} \mu_{l}^{(k)} R_{N}(l, \overline{d})$$

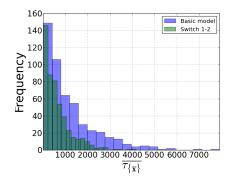
Pure mutational models

Mutation and division

Mutation, division and selection

Numerical simulations

Class switch of 1 or 2 length strings, depending on the Hamming distance to $\overline{\mathbf{x}}$



Histogram of the hitting times. N = 10

Theoretical result:

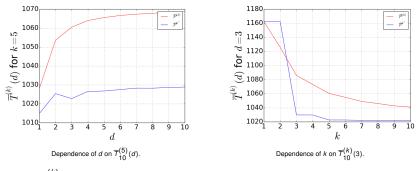
hitting time $= \frac{1}{2}$ (hitting time for the basic model)

Experimental results for N = 10 (over 5000 simulations):

 $\frac{\text{Basic model:}}{\text{Switch 1-2:}} \begin{array}{c} \text{1188.8} \pm \text{16.3} \\ \pm \text{8.5} \end{array}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The spectral analysis let us conclude that \mathcal{P}^{k^*} optimizes the mean hitting time to cover a given distance *d*, if k > 2.



 $\overline{T}_N^{(k)}(d)$ = mean hitting time from a distance *d* allowing 1 to *k* mutations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction 0000	Pure mutational models	Mutation and division	Mutation, division and selection	Conclusions and ongoing works
Plan				

Pure mutational models: random walks on graphs

Mutation and division: 2-branching random walks

4 Mutation, division and selection: multi-type Galton-Watson processes

▲□▶▲□▶▲□▶▲□▶ □ のQ@

6 Conclusions and ongoing works

Introduction	Pure mutational models	Mutation and division ●○○	Mutation, division and selection	Conclusions and ongo
Definition				

oina works

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Motivation and definitions

Purpose : Introduction and analysis of the division process

Definition : Simple 2-Branching Random Walk

- t = 0: a randomly chosen node is labelled as active
- t → t + 1 : each active node chooses 2 neighbors to become active (independently and with replacement)
- possible states: active or non-active (never mind if a node is chosen more than once)

Introduction Pure mutational models

Mutation and division

Mutation, division and selection

Conclusions and ongoing works

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theoretical results

Portion of \mathcal{H}_N covered in $\mathcal{O}(N)$

Notation 1	$S_t = \{ \text{active nodes at } t \}$	\Rightarrow	$ S_t = \#S_t$
------------	---	---------------	-----------------

 $\label{eq:station2} \underbrace{ \mbox{Potation 2} }_{\mbox{transition probability matrix is } \mathcal{M} } = \mbox{a simple 2-BRW on a graph whose transition probability matrix is } \mathcal{M}$

Theorem

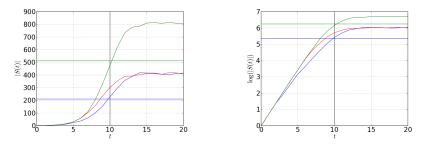
Given a simple 2-BRW- \mathcal{P} on \mathcal{H}_N , in a time $T = \mathcal{O}(N)$ w.g.p. $|S_T| \ge 2^{N-r}$, for $r > \frac{N^2 e^{-2} + N - 2}{Ne^{-2} + N - 2}$.

Theorem

Given a simple 2-BRW- $\mathcal{P}^{(k)}$ on \mathcal{H}_N , in a time $T = \mathcal{O}(N)$ w.g.p. $|S_T| \ge \delta 2^N$, for $\delta \le 1/2$.

[Dutta, C., Pandurangan, G., Rajaraman, R., Roche, S. 2013]

Using as transition probability matrix \mathcal{P} or \mathcal{P}^{k^*} the graph is bipartite: we can not have more than a half part of \mathcal{H}_N active. With $\mathcal{P}^{(k)}$ we do not have this problem anymore: we can invade all the state space.



|S(t)|, comparing the 2-branching random walk for \mathcal{P} (blue), \mathcal{P}^7 (red) and $\mathcal{P}^{(7)}$ (green). N = 10

(日) (日) (日) (日) (日) (日) (日)

Introduction 0000	Pure mutational models	Mutation and division	Mutation, division and selection	Conclusions and ongoing v
Plan				

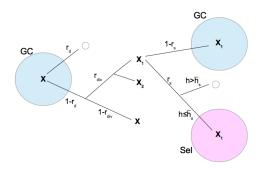
works

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

- Pure mutational models: random walks on graphs
- 3 Mutation and division: 2-branching random walks
- 4 Mutation, division and selection: multi-type Galton-Watson processes
- 6 Conclusions and ongoing works

- t = 0: A B-cell enters GC with initial Hamming distance h_0
- $t \rightarrow t + 1$: Death rate: r_d ; Division rate: r_{div} ; Selection rate: r_s (a) If $h > \overline{h}_s \Rightarrow$ death ; if $h \le \overline{h}_s \Rightarrow$ selected pool (b) If $h > \overline{h}_s \Rightarrow$ nothing ; if $h \le \overline{h}_s \Rightarrow$ selected pool



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Evolution of the selected pool

(N+3)-type Galton Watson process:

$$\mathbf{Z}_{t}^{(\mathbf{i})} = (Z_{t,0}^{(\mathbf{i})}, \dots, Z_{t,N+2}^{(\mathbf{i})})$$

• $0 \le j \le N$: $Z_{t,j}^{(i)} = \#$ GC B-cells having Hamming distance *j*

•
$$Z_{t,N+2}^{(i)} = #$$
 death B-cells

at time *t*, when the process is initiated in state $\mathbf{i} = (i_0, \dots, i_N, 0, 0)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction Pure mutational models

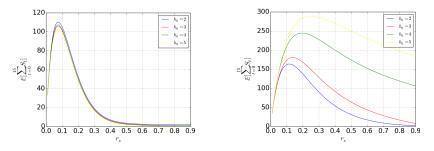
Mutation and division

Mutation, division and selection

Conclusions and ongoing works

Numerical simulations

Expected number of selected cells depending on r_s



Expected number of selected B-cells after 15 time steps with mutational model corresponding to matrix \mathcal{P} for model (a) and (b) respectively. N = 7, $r_{div} = 0.9$, $r_d = 0.1$, $\overline{h}_s = 3$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Pure mutational models

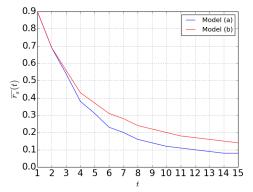
Mutation and division

Mutation, division and selection

Conclusions and ongoing works

Numerical simulations

Estimation of the best $r_s(t)$



Estimation of the best choice of r_s depending on tfor model (a) and (b) respectively, with mutational model corresponding to matrix \mathcal{P} .

$$N = 7, r_{div} = 0.9, r_d = 0.1, \overline{h}_s = 3, h_0 = 3.$$

(日)

Introduction Pure mutation

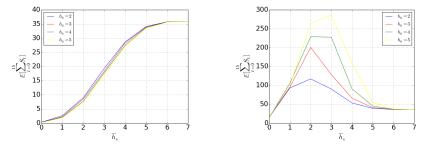
Pure mutational models

Mutation and division

Mutation, division and selection ○○○○●

Numerical simulations

Expected number of selected cells depending on \overline{h}_s



Expected number of selected B-cells after 15 time steps with mutational model corresponding to matrix \mathcal{P} for model (a) and (b) respectively. N = 7, $r_{div} = 0.9$, $r_d = 0.1$, $h_0 = 3$, $r_s = 0.3$.

Introduction 0000	Pure mutational models	Mutation and division	Mutation, division and selection	Conclusions and ongoing works
Plan				

- Pure mutational models: random walks on graphs
- 3 Mutation and division: 2-branching random walks
- Mutation, division and selection: multi-type Galton-Watson processes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Conclusions and ongoing works

Introduction	Pure mutational models	Mutation and division	Mutation, division and selection	Conclusions and ongoing works

Conclusions

• Results:

- Mathematical environment allowing us to introduce and study mutations characteristic of somatic hypermutation
- It allows to fix our point of view: genetic mutations on DNA or effective mutations on amino acids
- Introduction of a new kind of branching random walks on graphs
- Galton-Watson processes with affinity dependent selection

• Future objectives:

- Mathematical analysis of the model including division, mutation and selection
- Evaluation of other characteristics of the process (mutation rate, final population size, quality of the final clones, mutational lineage trees, etc.)

(ロ) (同) (三) (三) (三) (○) (○)