INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00	00000000	000000	0000

Variations on information theory: categories, cohomology, entropy.

Juan Pablo Vigneaux IMJ-PRG - Université Paris 7

May 17, 2016

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00 _	000000000	0000000	0000
NITRODUCTIO	NI		(
	N		

(Co)homology

Information

INFORMATION STRUCTURES

Observables

Probabilities

Functions

COHOMOLOGY

De Rham cohomology

Definition

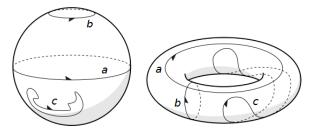
Perspectives

Perspectives

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
•0	00000000	000000	0000

(CO)HOMOLOGY

In geometry, homology and cohomology are related to the notion of "shape".



Define

 $H^1 = \{1\text{-dimensional cycles}\}/\{1\text{-dimensional boundaries}\}.$ The fact that dim $H^1(\text{sphere}) = 0$ and dim $H^1(\text{torus}) = 2$ is stable under continuous deformations.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

INTRODUCTION INFORMA	TION STRUCTURES	COHOMOLOGY	Perspectives
00 000000	0000	000000	0000

INFORMATION THEORY

Shannon (1948) defined the information content of a random variable $X : \Omega \rightarrow \{x_1, ..., x_n\}$ as

$$H(X) = -\sum_{k=0}^{n} \mathbb{P}(X = x_i) \log_2 \mathbb{P}(X = x_i),$$
(1)

where \mathbb{P} denotes a probability law on the space Ω . The function *H* is called entropy.

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
○●	00000000	000000	0000

INFORMATION THEORY

Shannon (1948) defined the information content of a random variable $X : \Omega \rightarrow \{x_1, ..., x_n\}$ as

$$H(X) = -\sum_{k=0}^{n} \mathbb{P}(X = x_i) \log_2 \mathbb{P}(X = x_i),$$
(1)

- ロ > - 4 日 > - 4 日 > - 4 日 > - 9 0 0

where \mathbb{P} denotes a probability law on the space Ω . The function *H* is called entropy.

Information is related to **uncertainty**.

- 1. Uniform distribution on $\{x_1, ..., x_n\}$ implies H(X) maximal.
- 2. If $P(X = x_i) = 1$ for certain *i*, then H(X) = 0.

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
○●	00000000	000000	0000

INFORMATION THEORY

Shannon (1948) defined the information content of a random variable $X : \Omega \rightarrow \{x_1, ..., x_n\}$ as

$$H(X) = -\sum_{k=0}^{n} \mathbb{P}(X = x_i) \log_2 \mathbb{P}(X = x_i),$$
(1)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

where \mathbb{P} denotes a probability law on the space Ω . The function *H* is called entropy.

Information is related to **uncertainty**.

- 1. Uniform distribution on $\{x_1, ..., x_n\}$ implies H(X) maximal.
- 2. If $P(X = x_i) = 1$ for certain *i*, then H(X) = 0.

Shannon recognized an important relation,

$$H(X, Y) = H(X) + H(Y|X).$$

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00	● 0000 00000	000000	0000

OBSERVABLES

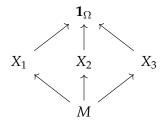
Consider a set of observables 1, $X_1, X_2, X_3, ...$ (where 1 corresponds to a certitude/a constant variable). We are just interested in the algebras of events defined by each variables... (we consider $X \cong Y$ if $\sigma(X) = \sigma(Y)$).

We can write an arrow $X \to Y$ if $\sigma(Y) \subset \sigma(X)$ (if "X refines Y").

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00	00000000	000000	0000

INFORMATION STRUCTURES: EXAMPLES

Example 1. Set $\Omega = \{1, 2, 3\}$ and define $X_i := \{\{i\}, \Omega \setminus \{i\}\}$. *M* is the atomic partition.



・ロト ・ 伊ト ・ ヨト ・ ヨト

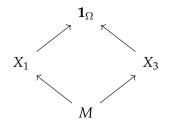
990

3

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00	00000000	0000000	0000

INFORMATION STRUCTURES: EXAMPLES

Example 2. As before, but the observable X_2 is not available.

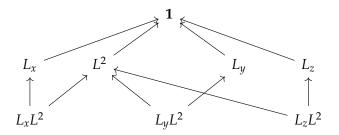


◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00	00000000	000000	0000

INFORMATION STRUCTURES: EXAMPLES

Example 3. From quantum physics. Here, L_x , L_y , L_z are the quantum observables that correspond to angular momentum and $L^2 = L_x^2 + L_y^2 + L_z^2$.



We cannot measure simultaneously two components of the angular momentum since the operators do not commute.

INFORMATION STRUCTURE: GENERAL DEFINITION

An information structure is a category, whose objects are observables (seen as partitions/ σ -algebras) and whose arrows are refinements (they form a poset for this relation).

We suppose that:

► given any three observables *X*, *Y* and *Z* in *S*, such that *X* refines *Y* and *Z*, then the joint observable

$$YZ := (Y, Z), \omega \mapsto (Y(\omega), Z(\omega))$$

also belongs to S.

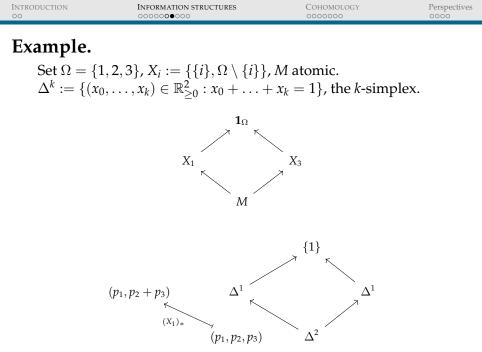
► *S* has a final object (a constant variable / a certitude).

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00	000000000	0000000	0000

PROBABILITIES

Each observable X defines an algebra of sets $\sigma(X)$. Fix a set Q_X of allowed laws on $(\Omega, \sigma(X))$, parametrized in some way.

To each arrow of refinement $X \to Y$, we want a surjective application $\mathfrak{Q}_X \xrightarrow{Y_*} \mathfrak{Q}_Y$, called marginalization.



FUNCTIONAL MODULE

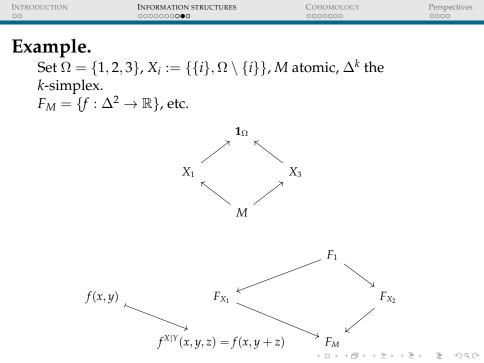
Similarly, for each observable *X*, consider the real vector space F_X of measurable functions on \mathcal{Q}_X (the entropy H[X] lives here!).

If $X \to Y$, a function $f \in Q_X$ can be mapped naturally to F_X : just set $f^{X|Y}(P) = f(Y_*P)$.

The set F_X accepts a natural action of S_X (these are the variables refined by X): for an observable Y (call the possible values $\{y_1, ..., y_k\}$) in S_X and $f \in F(\mathcal{Q}_X)$, the new function $Y.f \in F_X$ is given by

$$(Y.f)(P) = \sum_{i=1}^{k} P(Y = y_i) f(P|_{Y = y_i}).$$

< □ > < @ > < E > < E > E のQ@



INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00	00000000	0000000	0000

FINITE QUANTUM CASE

- The role of Ω is played by a fixed finite dimensional, complex vector space *E* with a distinguished basis (or a non-degenerate hermitian form).
- ► Observables are self-adjoint operators, they induce decompositions of *E* as direct-sum of subspaces (Spectral theorem).
- ► We can measure simultaneously two quantities only if the corresponding observables commute as operators. In this case the joint (*X*, *Y*) determines a refined decomposition.
- ► We obtain a category *S* of observables.
- Quantum laws are positive hermitian forms.
- ► Etc.

DE RHAM COHOMOLOGY

Question: $U \subset \mathbb{R}^2$, functions $f_1, f_2 : U \to \mathbb{R}$. Is $\frac{\partial f_1}{\partial y} - \frac{\partial f_2}{\partial x} = 0$ a sufficient condition for the existence of *F* such that $\nabla F = (f_1, f_2)$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 1. If *U* is star-shaped (radially convex): yes!
- 2. if $U = \mathbb{R}^2 \setminus \{0\}$: no.

DE RHAM COHOMOLOGY

Question: $U \subset \mathbb{R}^2$, functions $f_1, f_2 : U \to \mathbb{R}$. Is $\frac{\partial f_1}{\partial y} - \frac{\partial f_2}{\partial x} = 0$ a sufficient condition for the existence of *F* such that $\nabla F = (f_1, f_2)$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If *U* is star-shaped (radially convex): yes!
 if *U* = ℝ² \ {0}: no.

For example, for $(f_1, f_2) = \left(\frac{-x_2}{x_1^2 + x_2^2}, \frac{x_1}{x_1^2 + x_2^2}\right)$ such *F* does not exist,

DE RHAM COHOMOLOGY

Question: $U \subset \mathbb{R}^2$, functions $f_1, f_2 : U \to \mathbb{R}$. Is $\frac{\partial f_1}{\partial y} - \frac{\partial f_2}{\partial x} = 0$ a sufficient condition for the existence of *F* such that $\nabla F = (f_1, f_2)$?

If *U* is star-shaped (radially convex): yes!
 if *U* = ℝ² \ {0}: no.

For example, for $(f_1, f_2) = \left(\frac{-x_2}{x_1^2 + x_2^2}, \frac{x_1}{x_1^2 + x_2^2}\right)$ such *F* does not exist, since $\int_0^{2\pi} \frac{d}{d\theta} F(\cos\theta, \sin\theta) d\theta = F(1, 0) - F(1, 0) = 0$ but $\frac{d}{d\theta} F(\cos\theta, \sin\theta) = 1$ by the chain rule.

The answer depends on the "shape" (the topology) of *U*.

INTRODUCTION	INFORMATION STRUCTURES	COHOMOLOGY	Perspectives
00	000000000	000000	0000

Some Algebra...

$$C^{\infty}(U,\mathbb{R}) \qquad \{1 - \text{forms}\} \qquad \{2 - \text{forms}\} \\ \parallel \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \qquad \parallel \\ \Omega^{0}(U) \xrightarrow{\delta_{0} = \nabla} \Omega^{1}(U) \xrightarrow{\delta_{1} = \text{curl}} \Omega^{2}(U)$$

$$f \longmapsto \frac{\partial f}{\partial x} \, \mathrm{d} \, x + \frac{\partial f}{\partial y} \, \mathrm{d} \, y$$

$$g(x,y) dx + h(x,y) dy \longmapsto \left(\frac{\partial g}{\partial y} - \frac{\partial h}{\partial x}\right) dx \wedge dy.$$

Remark that $\operatorname{curl}(\nabla f) = 0$... this means that

im $\nabla \subset \ker(\operatorname{curl})$.

< □ ト < 団 ト < 三 ト < 三 ト < 三 - つへぐ</p>

INTRODUCTION	INFORMATION STRUCTURES	COHOMOLOGY	Perspectives
00	000000000	000000	0000

$$\Omega^0(U) \xrightarrow{\delta_0 = \nabla} \Omega^1(U) \xrightarrow{\delta_1 = \text{curl}} \Omega^2(U)$$

Define,

$$H^1(U) = \ker \delta_1 / \operatorname{im} \delta_0 = \operatorname{ker}(\operatorname{curl}) / \operatorname{im} \nabla.$$

Then,

1. $H^1(U) \cong \{0\}$ if *U* is star-shaped.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

INTRODUCTION INFO	ORMATION STRUCTURES	COHOMOLOGY	Perspectives
00 000	0000000	000000	0000

$$\Omega^0(U) \xrightarrow{\delta_0 = \nabla} \Omega^1(U) \xrightarrow{\delta_1 = \operatorname{curl}} \Omega^2(U)$$

Define,

$$H^1(U) = \ker \delta_1 / \operatorname{im} \delta_0 = \operatorname{ker}(\operatorname{curl}) / \operatorname{im} \nabla.$$

Then,

H¹(U) ≈ {0} if U is star-shaped.
 H¹(ℝ² \ {0}) ≠ {0}.

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

	STRUCTURES COHOMO	DLOGY Perspectives	
00 000000000	000000	0 0000	

$$\Omega^0(U) \xrightarrow{\delta_0 = \nabla} \Omega^1(U) \xrightarrow{\delta_1 = \text{curl}} \Omega^2(U)$$

Define,

$$H^1(U) = \ker \delta_1 / \operatorname{im} \delta_0 = \operatorname{ker}(\operatorname{curl}) / \operatorname{im} \nabla.$$

Then,

*H*¹(*U*) ≅ {0} if *U* is star-shaped.
 *H*¹(ℝ² \ {0}) ≠ {0}.
 In general, *H*¹(*U*) ≅ ℝⁿ if *U* has *n* holes.

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INTRODUCTION	INFORMATION STRUCTURES	COHOMOLOGY	Perspectives
00	000000000	000000	0000

THE TRICKY TECHNICAL POINTS...

- 1. Consider your category S. Over each $X \in S$ there is monoid S_X of variables coarser than X. Denote by \mathcal{A}_X the algebra generated over \mathbb{R} by this monoid.
- Put the trivial Grothendieck topology on S. The couple (S, A) is a ringed site. We work in the category *Mod*(A): sheaves of groups with an action of A (the sheaf *F* lives here!).
- 3. Define the information cohomology as (cf. Bennequin-Baudot, 2015 [1]):

$$H^n(\mathcal{S}, \mathcal{Q}) = \operatorname{Ext}^n(\mathbb{R}_{\mathcal{S}}, F).$$

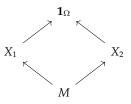
4. The bar resolution construction allows us to construct a complex

$$0 \longrightarrow C^0 \xrightarrow{\delta_0} C^1 \xrightarrow{\delta_1} C^2 \xrightarrow{\delta_2} \ldots$$

and compute $H^n(\mathcal{S}, \mathcal{Q}) \cong \ker \delta_n / \operatorname{im} \delta_{n-1}$.

Back to the observables.

Set $\Omega = \{1, 2, 3\}, X_i := \{\{i\}, \Omega \setminus \{i\}\}, M$ atomic, Δ^k the k-simplex.



The general construction says that a 1-cocycle is defined by 3 functions $f[X_1]: \mathfrak{Q}_{X_1} \to \mathbb{R}, f[X_2]: \mathfrak{Q}_{X_2} \to \mathbb{R}, f[M]: \mathfrak{Q}_M \to \mathbb{R}$ such

イロト イ理ト イヨト イヨト

1 SQC

that

(The conditions for being in the kernel of δ_1 , like $\frac{\partial f_1}{\partial y} - \frac{\partial f_2}{\partial x} = 0$... but more complicated.)

These are functional equations (!), each term is a function. They imply $X_2 \cdot f[X_1] + f[X_2] = X_1 \cdot f[X_2] + f[X_1]$ and if you plug a particular probability (p_0, p_1, p_2) here, you obtain

$$(1-p_2)f[X_1]\left(\frac{p_0}{1-p_2},\frac{p_1}{1-p_2}\right) - f[X_1](1-p_1,p_1)$$

= $(1-p_1)f[X_2]\left(\frac{p_0}{1-p_1},\frac{p_2}{1-p_1}\right) - f[X_2](1-p_2,p_2).$

INTRODUCTION	INFORMATION STRUCTURES	COHOMOLOGY	Perspectives
00	000000000	000000	0000

$$(1-p_2)f[X_1]\left(\frac{p_0}{1-p_2},\frac{p_1}{1-p_2}\right) - f[X_1](1-p_1,p_1)$$

= $(1-p_1)f[X_2]\left(\frac{p_0}{1-p_1},\frac{p_2}{1-p_1}\right) - f[X_2](1-p_2,p_2).$

People (Tverberg, Lee, Ng, etc.) have proved that the only measurable solution to this equation are

$$f[X_1](x, 1-x) = f[X_2](x, 1-x) = \lambda(-x\log x - (1-x)\log(1-x))$$

where λ is an arbitrary constant.

INTRODUCTION	INFORMATION STRUCTURES	COHOMOLOGY	Perspectives
00	000000000	000000	0000

$$(1-p_2)f[X_1]\left(\frac{p_0}{1-p_2},\frac{p_1}{1-p_2}\right) - f[X_1](1-p_1,p_1)$$

= $(1-p_1)f[X_2]\left(\frac{p_0}{1-p_1},\frac{p_2}{1-p_1}\right) - f[X_2](1-p_2,p_2).$

People (Tverberg, Lee, Ng, etc.) have proved that the only measurable solution to this equation are

$$f[X_1](x, 1-x) = f[X_2](x, 1-x) = \lambda(-x\log x - (1-x)\log(1-x))$$

where λ is an arbitrary constant.

This means that, in fairly general situations, the information cohomology $H^1(\mathcal{S}, \mathcal{Q})$ is a 1-dimensional vector space, all cocycles being multiples of entropy function.

INTRODUCTION	INFORMATION STRUCTURES	COHOMOLOGY	Perspectives
00	000000000	0000000	0000

An interesting idea is to see the information category as a primary object and Ω as a derived one. In this view, the observables (the objects of S) correspond to physical procedures and the arrows to particular ways of "attaching" one observable to another (given by certain protocol). A sample space corresponds to certain object that can be put "over" this category (see Gromov, 'On entropy' [2]).

Naïvely, we can start with certain category of (finite) observables and associate to it an initial object. This object is another set, whose elements correspond to combinations of compatible observations.

INTRODUCTION	INFORMATION STRUCTURES	Cohomology	Perspectives
00	000000000	0000000	0000

How many things can we see in this cohomology groups? What are the higher cohomology groups?

INTRODUCTION	INFORMATION STRUCTURES	COHOMOLOGY	Perspectives
00	000000000	0000000	0000

- P. BAUDOT AND D. BENNEQUIN, *The homological nature of entropy*, Entropy, 17 (2015), pp. 3253–3318.
- M. GROMOV, *In a search for a structure, part 1: On entropy.,* (2013).

INTRODUCTION	INFORMATION STRUCTURES	COHOMOLOGY	Perspectives
00	000000000	0000000	0000

Thank you!

・ ・ ・ ● ・ ・ = ・ ・ = ・ うへで