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(CO)HOMOLOGY

In geometry, homology and cohomology are related to the
notion of “shape”.

Define
H1 = {1-dimensional cycles}/{1-dimensional boundaries}.
The fact that dim H1(sphere) = 0 and dim H1(torus) = 2 is
stable under continuous deformations.



INTRODUCTION INFORMATION STRUCTURES COHOMOLOGY Perspectives

INFORMATION THEORY
Shannon (1948) defined the information content of a random
variable X : Ω→ {x1, ..., xn} as

H(X) = −
n∑

k=0

P(X = xi) log2 P(X = xi), (1)

where P denotes a probability law on the space Ω. The function
H is called entropy.

Information is related to uncertainty.

1. Uniform distribution on {x1, ..., xn} implies H(X) maximal.
2. If P(X = xi) = 1 for certain i, then H(X) = 0.

Shannon recognized an important relation,

H(X,Y) = H(X) + H(Y|X).
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OBSERVABLES

Consider a set of observables 1,X1,X2,X3, ... (where 1
corresponds to a certitude/a constant variable). We are just
interested in the algebras of events defined by each variables...
(we consider X ∼= Y if σ(X) = σ(Y)).

We can write an arrow X→ Y if σ(Y) ⊂ σ(X) (if “X refines Y”).
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INFORMATION STRUCTURES: EXAMPLES

Example 1. Set Ω = {1, 2, 3} and define Xi := {{i},Ω \ {i}}. M
is the atomic partition.

1Ω

X1 X2 X3

M
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INFORMATION STRUCTURES: EXAMPLES

Example 2. As before, but the observable X2 is not available.

1Ω

X1 X3

M
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INFORMATION STRUCTURES: EXAMPLES

Example 3. From quantum physics. Here, Lx, Ly, Lz are the
quantum observables that correspond to angular momentum
and L2 = L2

x + L2
y + L2

z .

1

Lx L2 Ly Lz

LxL2 LyL2 LzL2

We cannot measure simultaneously two components of the
angular momentum since the operators do not commute.
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INFORMATION STRUCTURE: GENERAL DEFINITION

An information structure is a category, whose objects are
observables (seen as partitions/σ-algebras) and whose arrows
are refinements (they form a poset for this relation).

We suppose that:

I given any three observables X, Y and Z in S, such that X
refines Y and Z, then the joint observable

YZ := (Y,Z), ω 7→ (Y(ω),Z(ω))

also belongs to S.
I S has a final object (a constant variable/ a certitude).
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PROBABILITIES

Each observable X defines an algebra of sets σ(X). Fix a set QX
of allowed laws on (Ω, σ(X)), parametrized in some way.

To each arrow of refinement X→ Y, we want a surjective

application QX
Y∗→ QY, called marginalization.



INTRODUCTION INFORMATION STRUCTURES COHOMOLOGY Perspectives

Example.
Set Ω = {1, 2, 3}, Xi := {{i},Ω \ {i}}, M atomic.
∆k := {(x0, . . . , xk) ∈ R2

≥0 : x0 + . . .+ xk = 1}, the k-simplex.

1Ω

X1 X3

M

{1}

(p1, p2 + p3) ∆1 ∆1

(p1, p2, p3) ∆2
(X1)∗
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FUNCTIONAL MODULE

Similarly, for each observable X, consider the real vector space
FX of measurable functions on QX (the entropy H[X] lives here!).

If X→ Y, a function f ∈ QX can be mapped naturally to FX: just
set f X|Y(P) = f (Y∗P).

The set FX accepts a natural action of SX (these are the variables
refined by X): for an observable Y (call the possible values
{y1, ..., yk}) in SX and f ∈ F(QX), the new function Y.f ∈ FX is
given by

(Y.f )(P) =

k∑
i=1

P(Y = yi)f (P|Y=yi).
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Example.
Set Ω = {1, 2, 3}, Xi := {{i},Ω \ {i}}, M atomic, ∆k the
k-simplex.
FM = {f : ∆2 → R}, etc.

1Ω

X1 X3

M

F1

f (x, y) FX1 FX2

f X|Y(x, y, z) = f (x, y + z) FM
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FINITE QUANTUM CASE

I The role of Ω is played by a fixed finite dimensional,
complex vector space E with a distinguished basis (or a
non-degenerate hermitian form).

I Observables are self-adjoint operators, they induce
decompositions of E as direct-sum of subspaces (Spectral
theorem).

I We can measure simultaneously two quantities only if the
corresponding observables commute as operators. In this
case the joint (X,Y) determines a refined decomposition.

I We obtain a category S of observables.
I Quantum laws are positive hermitian forms.
I Etc.
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DE RHAM COHOMOLOGY

Question: U ⊂ R2, functions f1, f2 : U→ R. Is ∂f1
∂y −

∂f2
∂x = 0 a

sufficient condition for the existence of F such that∇F = (f1, f2)?

1. If U is star-shaped (radially convex): yes!
2. if U = R2 \ {0}: no.

For example, for (f1, f2) =
(
−x2

x2
1+x2

2
, x1

x2
1+x2

2

)
such F does not exist, since∫ 2π

0
d

dθF(cos θ, sin θ)dθ = F(1, 0)− F(1, 0) = 0 but d
dθF(cos θ, sin θ) = 1

by the chain rule.

The answer depends on the “shape” (the topology) of U.
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SOME ALGEBRA...

C∞(U,R) {1− forms} {2− forms}

Ω0(U) Ω1(U) Ω2(U)

f ∂f
∂x d x +

∂f
∂y d y

g(x, y) d x + h(x, y) d y
(
∂g
∂y −

∂h
∂x

)
d x ∧ d y.

δ0=∇ δ1=curl

Remark that curl(∇f ) = 0... this means that

im∇ ⊂ ker(curl).
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Ω0(U) Ω1(U) Ω2(U)
δ0=∇ δ1=curl

Define,

H1(U) = ker δ1/ im δ0 = ker(curl)/ im∇.

Then,

1. H1(U) ∼= {0} if U is star-shaped.

2. H1(R2 \ {0}) 6= {0}.
3. In general, H1(U) ∼= Rn if U has n holes.
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THE TRICKY TECHNICAL POINTS...
1. Consider your category S. Over each X ∈ S there is

monoid SX of variables coarser than X. Denote by AX the
algebra generated over R by this monoid.

2. Put the trivial Grothendieck topology on S. The couple
(S,A) is a ringed site. We work in the category Mod(A):
sheaves of groups with an action of A (the sheaf F lives
here!).

3. Define the information cohomology as (cf.
Bennequin-Baudot, 2015 [1]):

Hn(S,Q) = Extn(RS,F).

4. The bar resolution construction allows us to construct a
complex

0 C0 C1 C2 . . .
δ0 δ1 δ2

and compute Hn(S,Q) ∼= ker δn/ im δn−1.
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Back to the observables.

Set Ω = {1, 2, 3}, Xi := {{i},Ω \ {i}}, M atomic, ∆k the
k-simplex.

1Ω

X1 X2

M

The general construction says that a 1-cocycle is defined by 3
functions f [X1] : QX1︸︷︷︸

=∆1

→ R, f [X2] : QX2 → R, f [M] : QM → R such

that
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... a 1-cocycle is defined by 3 functions f [X1] : QX1︸︷︷︸
=∆1

→ R,

f [X2] : QX2 → R, f [M] : QM → R such that

0 = X1.f [X2]− f [M] + f [X1]

0 = X2.f [X1]− f [M] + f [X2]

. . .

(The conditions for being in the kernel of δ1, like ∂f1
∂y −

∂f2
∂x = 0...

but more complicated.)

These are functional equations (!), each term is a function. They
imply X2.f [X1] + f [X2] = X1.f [X2] + f [X1] and if you plug a
particular probability (p0, p1, p2) here, you obtain

(1− p2)f [X1]

(
p0

1− p2
,

p1

1− p2

)
− f [X1](1− p1, p1)

= (1− p1)f [X2]

(
p0

1− p1
,

p2

1− p1

)
− f [X2](1− p2, p2).
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(1− p2)f [X1]

(
p0

1− p2
,

p1

1− p2

)
− f [X1](1− p1, p1)

= (1− p1)f [X2]

(
p0

1− p1
,

p2

1− p1

)
− f [X2](1− p2, p2).

People (Tverberg, Lee, Ng, etc.) have proved that the only
measurable solution to this equation are

f [X1](x, 1− x) = f [X2](x, 1− x) = λ(−x log x− (1− x) log(1− x))

where λ is an arbitrary constant.

This means that, in fairly general situations, the information
cohomology H1(S,Q) is a 1-dimensional vector space, all
cocycles being multiples of entropy function.



INTRODUCTION INFORMATION STRUCTURES COHOMOLOGY Perspectives

(1− p2)f [X1]

(
p0

1− p2
,

p1

1− p2

)
− f [X1](1− p1, p1)

= (1− p1)f [X2]

(
p0

1− p1
,

p2

1− p1

)
− f [X2](1− p2, p2).

People (Tverberg, Lee, Ng, etc.) have proved that the only
measurable solution to this equation are

f [X1](x, 1− x) = f [X2](x, 1− x) = λ(−x log x− (1− x) log(1− x))

where λ is an arbitrary constant.

This means that, in fairly general situations, the information
cohomology H1(S,Q) is a 1-dimensional vector space, all
cocycles being multiples of entropy function.



INTRODUCTION INFORMATION STRUCTURES COHOMOLOGY Perspectives

An interesting idea is to see the information category as a
primary object and Ω as a derived one. In this view, the
observables (the objects of S) correspond to physical
procedures and the arrows to particular ways of “attaching”
one observable to another (given by certain protocol). A sample
space corresponds to certain object that can be put “over” this
category (see Gromov, ’On entropy’ [2]).

Naı̈vely, we can start with certain category of (finite)
observables and associate to it an initial object. This object is
another set, whose elements correspond to combinations of
compatible observations.



INTRODUCTION INFORMATION STRUCTURES COHOMOLOGY Perspectives

How many things can we see in this cohomology groups?
What are the higher cohomology groups?
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P. BAUDOT AND D. BENNEQUIN, The homological nature of
entropy, Entropy, 17 (2015), pp. 3253–3318.

M. GROMOV, In a search for a structure, part 1: On entropy.,
(2013).
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Thank you!
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