Stochastic models of protein production with feedback

Renaud Dessalles joint work with Vincent Fromion and Philippe Robert

INRA Jouy-en-Josas - INRIA Rocquencourt (Fance)

16th. May 2016

Presentation

Biological context

Mathematical framework

Equilibrium results

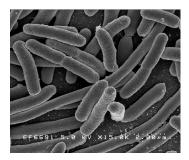
Other aspects of the controlled model

Part 1

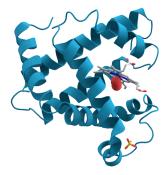
Biological context

Cells and proteins

- Cells: unit of life.
- ► Its goal: grow and divide.



- Functional molecules: proteins
 - enzymes, wall, energy, etc.
- Produced from the genes



Protein production: A central mechanism

Proteins represents:

- ▶ 50% of the dry mass
- \sim 3 million molecules
- \blacktriangleright ~ 2000 different types
- ▶ from few dozens up to 10⁵ proteins per type

It needs to be duplicated in one cell cycle (approx. 30 min)

Protein production: A central mechanism

Proteins represents:

- ▶ 50% of the dry mass
- \sim 3 million molecules
- \blacktriangleright ~ 2000 different types
- ▶ from few dozens up to 10⁵ proteins per type

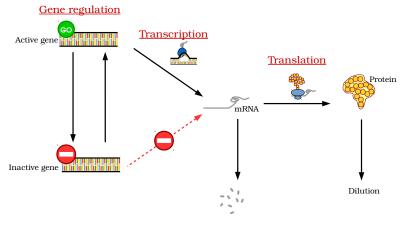
It needs to be duplicated in one cell cycle (approx. 30 min)

85% of the resources for protein production

Classic protein production mechanism

Protein production in 3 steps:

- 1. Gene regulation
- 2. Transcription: to produce mRNA
- 3. Translation: to produce proteins



Highly variable process

The protein production subject to high variability:

- Interior of bacteria: non-organized medium
- Mobility of compounds: through random diffusion
- ► Cellular mechanism: random collision between molecules

Highly variable process

The protein production subject to high variability:

- Interior of bacteria: non-organized medium
- Mobility of compounds: through random diffusion
- ► Cellular mechanism: random collision between molecules Problem: 85% of the resources for the protein production, impacted by a large variability.

Highly variable process

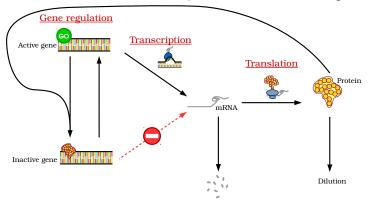
The protein production subject to high variability:

- Interior of bacteria: non-organized medium
- Mobility of compounds: through random diffusion
- ► Cellular mechanism: random collision between molecules Problem: 85% of the resources for the protein production, impacted by a large variability.

A main issue for the bacteria: control the variability in protein production.

Protein production mechanism with feedback

Production with feedback: the protein binds to its own gene.



More proteins \Rightarrow Gene more inactive

A way to reduce variability?

Classical production vs Feedback production

 Conjecture: less variability in proteins with feedback production.

Classical production vs Feedback production

 Conjecture: less variability in proteins with feedback production.

Our Goal

Comparison of distributions of proteins in the two models.

Part 2

Mathematical framework

Markovian description

Framework for protein production modeling:

- Rigney and Schieve (1977)
- Berg (1978)
- Paulsson (2005)

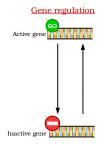
Three types of events:

- Encounter between molecules
- Elongation of molecules
- Lifetime of molecules

Assumption: Exponential times

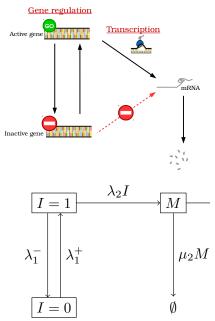
Each event occurs at exponential time.

The classical model



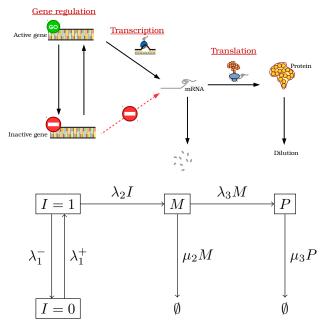


The classical model



12/29

The classical model



Mean and variance for the classical model

For the classical model, the mean and the variance are known Paulsson (2005):

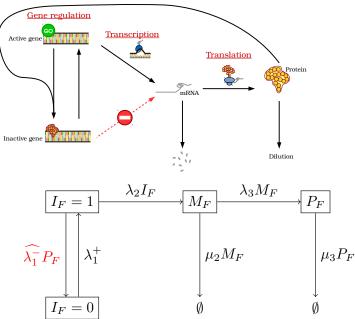
Equality of flows gives

$$\mathbb{E}\left[P\right] = \frac{\lambda_1^+}{\lambda_1^+ + \lambda_1^-} \cdot \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_3}{\mu_3}$$

Equilibrium equations give:

$$\mathbb{V}ar[P] = \mathbb{E}[P] \left(1 + \frac{\lambda_3}{\mu_2 + \mu_3} + \frac{\lambda_2 \lambda_3 \left(1 - \lambda_1^+ / \left(\lambda_1^+ + \lambda_1^- \right) \right) \left(\lambda_1^+ + \lambda_1^- + \mu_2 + \mu_3 \right)}{(\mu_2 + \mu_3) \left(\lambda_1^+ + \lambda_1^- + \mu_2 \right) \left(\lambda_1^+ + \lambda_1^- + \mu_3 \right)} \right).$$

The feedback model



14/29

Mean and variance for the Feedback model

Equality of flows gives

$$\mathbb{E}[P_C] = \mathbb{E}[I_C] \cdot \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_3}{\mu_3}.$$

• Problem : no known expression for $\mathbb{E}[I_C]$:

• the equality of flows on I_C :

$$\widehat{\lambda_1^{-}}\mathbb{E}\left[I_C P_C\right] = \lambda_1^+ \left(1 - \mathbb{E}\left[I_C\right]\right).$$

Difficulties to make comparisons between the two models

Part 3

Equilibrium results

Scaling

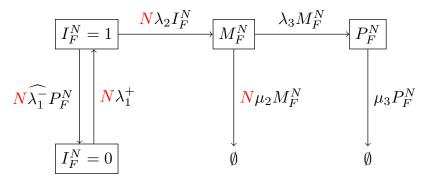
Introduction of a scaling:

Gene regulation timescale Messenger RNA timescale } faster than the protein time scale

Scaling

Introduction of a scaling:

Gene regulation timescale Messenger RNA timescale } faster than the protein time scale



N scaling parameter

Effects of the scaling

Example: Feedback model

State of the model:

$$\left(I_F^N(t), M_F^N(t), P_F^N(t)\right)$$

- I_F^N and M_F^N on a quick timescale.
- P_F^N on a slow timescale.

 I_F^N and M_F^N reach some equilibrium depending on the slow current $P_F^N(t)$ state

 τ_1^N : the first time of jump of P_F^N ; Starting at number of proteins $x = P_F^N(0)$;

 τ_1^N : the first time of jump of P_F^N ; Starting at number of proteins $x = P_F^N(0)$;

• $(I_F^N(t))$ reaches its equilibrium quickly:

$$\mathbb{E}\left[I_F^N(t)| 0 < t < \tau_1^N, P_F^N(0) = x\right] \xrightarrow{N \to \infty} \frac{\lambda_1^+}{\lambda_1^+ + \widehat{\lambda_1^-} x}.$$

 τ_1^N : the first time of jump of P_F^N ; Starting at number of proteins $x = P_F^N(0)$;

• $(I_F^N(t))$ reaches its equilibrium quickly:

$$\mathbb{E}\left[I_F^N(t)|0 < t < \tau_1^N, P_F^N(0) = x\right] \xrightarrow{N \to \infty} \frac{\lambda_1^+}{\lambda_1^+ + \widehat{\lambda_1^- x}}.$$

•
$$(M_F^N(t))$$
 reaches its equilibrium quickly:

$$\mathbb{E}\left[M_F^N(t)|0 < t < \tau_1^N, P_F^N(0) = x\right] \xrightarrow{N \to \infty} \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_1^+}{\lambda_1^+ + \lambda_1^- x}$$

 τ_1^N : the first time of jump of P_F^N ; Starting at number of proteins $x = P_F^N(0)$;

• $(I_F^N(t))$ reaches its equilibrium quickly:

$$\mathbb{E}\left[I_F^N(t)|0 < t < \tau_1^N, P_F^N(0) = x\right] \xrightarrow{N \to \infty} \frac{\lambda_1^+}{\lambda_1^+ + \widehat{\lambda_1^- x}}.$$

- $(M_F^N(t))$ reaches its equilibrium quickly: $\mathbb{E}\left[M_F^N(t)|0 < t < \tau_1^N, P_F^N(0) = x\right] \xrightarrow{N \to \infty} \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_1^+}{\lambda_1^+ + \widehat{\lambda_1^-} x}.$
- Rate of production of proteins tends to:

$$\lambda_3 \cdot \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_1^+}{\lambda_1^+ + \widehat{\lambda_1^-} x}$$

Convergence of the models

Theorem

The process $(P_F^N(t))$ converges in distribution to a birth and death process with (x number of proteins):

$$\beta_x = \lambda_3 \cdot \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_1^+}{\lambda_1^+ + \widehat{\lambda_1^-} x}$$
 and $\delta_x = \mu_3 x$.

Convergence of the models

Theorem

The process $(P_F^N(t))$ converges in distribution to a birth and death process with (x number of proteins):

$$\beta_x = \lambda_3 \cdot \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_1^+}{\lambda_1^+ + \widehat{\lambda_1^-} x} \quad \text{and} \quad \delta_x = \mu_3 x.$$

Idem for uncontrolled model:

Theorem

The process $(P^N(t))$ converges in distribution to a birth and death process with (x number of proteins):

$$\beta_x = \lambda_3 \cdot \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_1^+}{\lambda_1^+ + \lambda_1^-}$$
 and $\delta_x = \mu_3 x$.

Feature of the scaled models

• Equilibrium distributions.

• Classical model: P^{∞} follow a *Poisson distribution*:

$$P^{\infty} \sim \mathcal{P}\left(\frac{\lambda_3}{\mu_3} \cdot \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_1^+}{\lambda_1^+ + \lambda_1^-}\right)$$

• Feedback model: P^{∞} follow the limit distribution

$$\pi_F(x) = \frac{1}{Z \cdot x!} \left(\frac{\lambda_3}{\mu_3} \cdot \frac{\lambda_2}{\mu_2} \right)^x \prod_{i=0}^{x-1} \frac{\lambda_1^+}{\lambda_1^+ + \lambda_1^- i}$$

Feature of the scaled models

• Equilibrium distributions.

• Classical model: P^{∞} follow a *Poisson distribution*:

$$P^{\infty} \sim \mathcal{P}\left(\frac{\lambda_3}{\mu_3} \cdot \frac{\lambda_2}{\mu_2} \cdot \frac{\lambda_1^+}{\lambda_1^+ + \lambda_1^-}\right)$$

• Feedback model: P^{∞} follow the limit distribution

$$\pi_F(x) = \frac{1}{Z \cdot x!} \left(\frac{\lambda_3}{\mu_3} \cdot \frac{\lambda_2}{\mu_2} \right)^x \prod_{i=0}^{x-1} \frac{\lambda_1^+}{\lambda_1^+ + \lambda_1^- i}$$

Variance comparison

$$\mathbb{V}ar\left[P^{\infty}\right] = \mathbb{E}\left[P^{\infty}\right] \quad \text{and} \quad \mathbb{V}ar\left[P_{F}^{\infty}\right] \leq \mathbb{E}\left[P_{F}^{\infty}\right]$$

Asymptotic behaviour of the Feedback model

Introducing:

$$\rho := \frac{\lambda_1^+}{\widehat{\lambda_1^-}} \frac{\lambda_3}{\mu_3} \cdot \frac{\lambda_2}{\mu_2} \quad \text{and} \quad \eta := \frac{\lambda_1^+}{\widehat{\lambda_1^-}} - 1$$

it comes:

$$\pi_F(x) = \frac{1}{Z \cdot x!} \rho^x \prod_{i=1}^x \frac{1}{\eta + i}.$$

Asymptotic behaviour

Increase ρ while keeping η constant:

Increase protein production while keeping the gene regulation constant

Asymptotic behaviour of the Feedback model

With Laplace method:

Theorem

Convergence in distribution:

$$\lim_{\rho \to \infty} \frac{P_F^{\infty} - a_{\rho}}{\sqrt{a_{\rho}}} = \mathcal{N}\left(0, 1/\sqrt{2}\right)$$
with $a_{\rho} = \left(\sqrt{\eta^2 + 4\rho} - \eta\right)$.

Corollary

$$\lim_{\rho \to \infty} \frac{\mathbb{E}\left[P_F^{\infty}\right]}{\sqrt{\rho}} = 1 \quad \text{and} \quad \lim_{\rho \to \infty} \frac{\mathbb{V}ar\left[P_F^{\infty}\right]}{\mathbb{E}\left[P_F^{\infty}\right]} = \frac{1}{2}$$

Conclusion for the noise control

For the scaled model:

 $\mathbb{V}ar\left[P^{\infty}\right] = \mathbb{E}\left[P^{\infty}\right] \quad \text{and} \quad \mathbb{V}ar\left[P_{F}^{\infty}\right] \leq \mathbb{E}\left[P_{F}^{\infty}\right]$

Asymptotic behaviour:

$$\mathbb{V}$$
ar $[P^{\infty}] = \mathbb{E}[P^{\infty}]$ and \mathbb{V} ar $[P_F^{\infty}] \underset{\rho \to \infty}{\sim} \frac{1}{2} \mathbb{E}[P_F^{\infty}]$

The reduction of variance is limited in feeback model.

Part 4

Other aspects of the controlled model

Dynamical aspects

Equilibrium reaching

Which model go faster to reach the equilibrium?

Biological example: need for a quick activation of the protein production.

Dynamical aspects

Equilibrium reaching

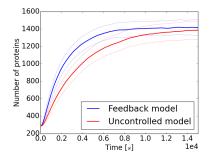
Which model go faster to reach the equilibrium?

Biological example: need for a quick activation of the protein production.

Simulations: comparison for the two models:

- Starting at a low protein production
- Evolution to a high level of protein production

Simulation for dynamical aspects



- 1000 simulations
 - Thick lines: average of trajectories
 - Fine lines: ± standard deviation
- Here, controlled model is 20% faster

Thank you for you attention

Article:

Dessalles, R., Fromion, V., and Robert, P. (2015). arXiv:1509.02045

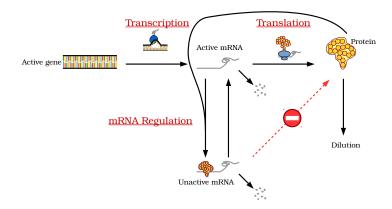
PhD work supervised by

Vincent Fromion

Philippe Robert

Other work

Regulation on the mRNA rather than on the gene



Intermediate metabolite step in regulation