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Basic problem

I X = {Xt, t ∈ [0, 1]} in Rd.
I µ(A) =

∫ 1

0
1A(Xt)dt for all A ⊂ Rd.

Question : regularity ?

I Absolute continuity (local times when X is Markovian).

I Local dimensions, i.e. for x ∈ supp(µ), the positive real h such
that

µ(B(x, r)) ∼ rh.

I NOT always well defined : limr→0
lnµ(B(x,r))

ln r
may not exist.

I How does h depend on the value x ? described via a regularity
exponent h(x).
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Examples

B : Brownian motion in Rd.
I d = 1 : local times exist [Lévy].

I d ≥ 2 : local dimension is 2 for all x ∈ supp(µ) [Perkins-Taylor].

σ : α-stable subordinator, i.e. increasing stable Lévy process in R+.

I Local dimension is α for µ-almost every x ∈ supp(µ) [Hu-Taylor].

I Exceptional points ? Yes.

Related question :

For B in high dimension, one might wonder how the local regularity
of µ fluctuates in logarithmic order, see Dembo-Peres-Rosen-Zeitouni.
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Framework : multifractal analysis

Goal : distinguish different local behaviors of µ by a description of
the “size” of the set of points with given regularity.

Definition

The upper local dimension of µ at x is defined by

h(µ, x) = lim sup
r→0

lnµ(B(x, r))

ln r
.

One defines similarly the lower local dimension h(µ, x) and local
dimension h(µ, x) when the limit exists.
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Definition

Define the iso-holder sets

E(h) = {x ∈ supp(µ) : h(µ, x) = h}.

The upper multifractal spectrum of µ is the mapping

dµ(·) : h 7→ dimHE(h).

One defines similarly dµ(·) and dµ(·).

“Recall” : Hausdorff dimension describes the size of “small” sets in a
metric space, e.g. a triadic Cantor set in R1.
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Thin points for α-stable subordinator

Recall local dimension exists for typical points : h(µ, x) = α for
µ-almost every point in suppµ, i.e.

µ(B(x, r)) ∼ rα.

However, there are “many” points with smaller than normal mass, i.e.

µ(B(x, r)) ∼ rh with h > α.

They are called thin points.

Theorem (Hu-Taylor)

A.s. the following holds

dµ(h) =

{
α( 2α

h − 1) if h ∈ [α, 2α],

−∞ otherwise.
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Our process : stable-like jump diffusion

I Goal : describe thin points of jump diffusions (i.e. jumping SDE)
by multifractal analysis.

I Difference/Difficulty : no more stationary increment,
Markovian dynamic is space-dependent.

Definition (Bass)

The stable-like jump diffusion is a Markov processes with generator

Lf(x) =

∫ 1

0

f(x+ u)− f(x)
β(x)du

u1+β(x)

where β is a Lipschitz function taking value in [ε, 1− ε].

Remark : when β(·) = α ∈ (0, 1), one recovers α-stable subordinator
(truncated large jumps).
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The stable-like jump diffusion satisfies the jumping SDE

Mt =

∫ t

0

∫ 1

0

z1/β(Ms−)N(ds, dz).

where N(ds, dz) is a Poisson random measure with intensity
π(dz) = dz/z2.

Remind : dimension of the sets E(h) = {x ∈ supp(µ) : h(µ, x) = h}.
Need a translation !
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Preparation I : heuristic computation

If x = Mt ∈ E(h), necessarily

µ(B(Mt, rn)) ≤ rnh−ε, for rn → 0.

µ(·) measures the time spent by M inside balls, last inequality means
M can not move too slowly, precisely, infinitely often

|Mt+2−n −Mt| ∧ |Mt −Mt−2−n | ≥ 2−n/((h−ε)β(Mt)).

Need estimate for increments.
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Preparation II : a key estimate

Proposition

For all δ > 1, m ∈ N∗, with probability larger than 1− e−m, for
|t− s| ∼ 2−m,∣∣∣∣∣

∫ t

s

∫ 2−
m
δ

0

z1/β(Mu−)N(du, dz)

∣∣∣∣∣ ≤ log

(
1

|s− t|

)2

|s− t|
1

δ·β̂ms,t

with β̂ms,t ≈ sup
u∈[s,t]

β(Mu−).

Remark : uniformly, small jumps accumulation has the same effect
of a single jump.
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So there are two “large” jumps beside t satisfying Mt ∈ E(h) for
infinitely many time scales.

Highlight double jumps configuration in the Poisson point process
gives an upper bound for

dimH{t : h(µ,Mt) = h}.

From time to space : still need an analog of the dimension doubling
theorem for BM

Lower bound is more involved (construction of Cantor sets inside
iso-Holder sets).
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Multifractal spectrum

Theorem (16’ Seuret and Y.)

A.s. the upper multifractal spectrum of µ is

h

dµ(h)

0
β(Mt)

Remark : superposition of random curves.
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Merci de votre attention !

13 / 13


	Introduction : regularity and multifractal analysis, examples

