Unit volume Liouville measure on the sphere with (γ, γ, γ)-INSERTIONS: THE LINK BETWEEN TWO CONSTRUCTIONS

Yichao Huang ${ }^{[E N S]}$, joint with Juhan Aru ${ }^{[E T H]}$, Xin Sun ${ }^{[M I T]}$

Introduction

Motivation: Liouville Quantum Gravity

Two constructions of random measures on the sphere by David ${ }^{\circ}$, Duplantier${ }^{\bullet}$, Kupiainen ${ }^{\circ}$, Miller${ }^{\bullet}$, Rhodes ${ }^{\circ}$, Sheffield ${ }^{\bullet}$, Vargas ${ }^{\circ}$.

- = [DKRV14]: explicit formulæ for correlation functions, $n \geq 3$ insertions of arbitrary weights, suitable for compact surfaces of all genus.
$\bullet=[D M S 14]: n \leq 2$ insertions with same weight, metric in the $\gamma=\sqrt{8 / 3}$ case, SLE/GFF coupling, suitable for non-compact surfaces.

Goal of [AHS15]: find a link between these two constructions.

Outline

I. Conformal embedding
II. Two constructions
III. Theorem and consequences

Section I

Conformal embedding

MÖBIUS TRANSFORMATIONS

as the automorphism group of the Riemann sphere

Definition

A (conformal) automorphism φ of the complex plane \mathbb{C} writes

$$
\varphi: z \mapsto \frac{a z+b}{c z+d}
$$

with $a, b, c, d \in \mathbb{C}, a d-b c=1$.
Exercice 1: give all φ such that $\varphi(0)=0, \varphi(1)=1, \varphi(\infty)=\infty$.
Exercice 2: give all φ such that $\varphi(0)=0, \varphi(\infty)=\infty$.

Embedding with three marked points

Take a large random planar map with chosen marked points (z_{1}, z_{2}, z_{3}) and some conformal structure.
We "embed" this map on the sphere by sending conformally $\left(z_{1}, z_{2}, z_{3}\right)$ to $(0,1, \infty)$.
There is a unique way to do it - the limiting measure should be described by a random measure.

Conjecture: choose the three marked points uniformly among all vertices, convergence to Liouville measure with three insertions of weight γ.

Embedding with two marked points

AS AN EQUIVALENCE CLASS OF RANDOM MEASURES

Imagine instead we only consider two points $\left(z_{1}, z_{2}\right)$ and we map them to $(0, \infty)$.
The mapping is ill-defined! We make use of the following equivalence class:

Definition (A quotient space Q)

Two (random) measures with marked points ($D, \mu, s_{1}, \ldots, s_{n}$) and ($D^{\prime}, v, t_{1}, \ldots, t_{n}$) are said equivalent if there is a (random) conformal map φ from D to D^{\prime} that maps $\left(s_{1}, \ldots, s_{n}\right)$ to $\left(t_{1}, \ldots, t_{n}\right)$ and such that $\varphi_{*}(\mu)=v ; \varphi_{*}$ is the pushforward defined by $\varphi_{*}(\mu)(A)=\mu\left(\varphi^{-1}(A)\right)$.

In particular, if we fix \mathbb{C} with two marked points $(0, \infty)$, we get a family of (random) measures defined modulo a dilatation. One should describe this limit using a construction that is not sensible to the action of a certain subgroup of the Möbius group (here, the dilatations).

Section II

Two constructions

The DKRV definition

of the unit volume Liouville measure with $n \geq 3$ insertions

Definition (Unit volume Liouville measure)

Let g be a metric on the sphere. Let X_{g} be a whole plane GFF such that $\int_{\mathbb{R}^{2}} X_{g}(z) d g=0$. Consider

$$
X_{L}=X_{g}(z)+\sum_{i} \alpha_{i} \ln \left|z-z_{i}\right|
$$

and let $Z_{\gamma}\left(\mathbb{R}^{2}\right)=\int_{\mathbb{R}^{2}} e^{\gamma X_{L}(z)} d \lambda_{g}$ the volume form associated with X_{L}.
The law of the unit volume Liouville measure is given by

$$
\mu(A)=\int_{A} e^{\gamma X_{U}(z)} d \lambda_{g}
$$

where $X_{U}=X_{L}-\frac{1}{\gamma} \ln Z_{\gamma}\left(\mathbb{R}^{2}\right)$ under the measure $Z_{\gamma}\left(\mathbb{R}^{2}\right)^{\frac{2 Q-\sum_{i} \alpha_{i}}{\gamma}} d \mathbb{P}_{X_{g}}$.

The DMS equivalence class of random measures

WITH TWO γ-INSERTIONS AT 0 AND ∞

Definition (Bessel process encoding)

Every distribution on \mathbb{C} can be decomposed into two parts:

- the radial part: average on circles $\partial B(0, r)$;
- the lateral noise part: fluctuation on each circles.

Let $\delta=4-8 / \gamma^{2}$ and $v_{\delta}^{B E S}$ the Bessel excursion measure of dimension δ.
We sample the radial part R in the following way:

1. Sample a Bessel excursion e w.r.t. $v_{\delta}^{B E S}$;
2. Reparametrizing $\frac{1}{\gamma} \operatorname{loge}$ to have unit quadratic variation.

Add (independently) the lateral noise N part by projection.
This will give us a distribution (in fact, a Gaussian field) defined modulo dilatation. Take the exponential: we get the equivalence class of random measures with two γ-insertions at 0 and ∞.

Section III

Theorem and consequences

Main theorem of [AHS15]

From DMS14 то DKRV14

For better comprehension, we state the theorem in plain words.

Theorem (AHS15)

Take the sphere, or the whole plane.

1. Consider a measure in the DMS equivalence class with two γ-insertions at 0 and ∞;
2. Choose a third point z w.r.t. this measure;
3. Use a conformal map that shifts $(0, z, \infty)$ to $(0,1, \infty)$;
4. Push-forward the chosen measure in the DMS class by this conformal map;
5. We get DKRV measure with three γ-insertions at 0,1 and ∞ !

Attention! It is not trivial to describe the random conformal map in step 3.

Consequence

From DKRV14 то DMS14...

Remark (Consequence)

1. Take DKRV measure with three γ-insertions at 0,1 and ∞;
2. Forget about the point 1, and pass to the quotient space Q;
3. We get the DMS equivalence class with two γ-insertions at 0 and ∞.

Thanks!

Isaac Newton Institute for Mathematical Sciences

