Unit volume Liouville measure on the sphere with (γ, γ, γ) -insertions: the link between two constructions

Yichao Huang^[ENS], joint with Juhan Aru^[ETH], Xin Sun^[MIT]

Yichao Huang

IHÉS, 17 May 2016 1 / 14

INTRODUCTION Motivation: Liouville Quantum Gravity

Two constructions of random measures on the sphere by David[°], Duplantier[•], Kupiainen[°], Miller[•], Rhodes[°], Sheffield[•], Vargas[°].

 $\circ = [DKRV14]$: explicit formulæ for correlation functions, $n \ge 3$ insertions of arbitrary weights, suitable for compact surfaces of all genus.

• = [DMS14]: $n \le 2$ insertions with same weight, metric in the $\gamma = \sqrt{8/3}$ case, SLE/GFF coupling, suitable for non-compact surfaces.

Goal of [AHS15]: find a link between these two constructions.

-

I. Conformal embedding

II. Two constructions

III. THEOREM AND CONSEQUENCES

YICHAO HUANG

DKRV14 and DMS14

IHÉS, 17 May 2016 3 / 14

э

イロト イロト イヨト イヨト

Section I

Conformal embedding

YICHAO HUANG

IHÉS, 17 May 2016 4 / 14

2

・ロト ・四ト ・ヨト ・ヨト

Möbius transformations

AS THE AUTOMORPHISM GROUP OF THE RIEMANN SPHERE

DEFINITION

A (conformal) automorphism arphi of the complex plane $\mathbb C$ writes

$$\varphi: z \mapsto \frac{az+b}{cz+d}$$

with $a, b, c, d \in \mathbb{C}$, ad - bc = 1.

Exercice 1: give all φ such that $\varphi(0) = 0, \varphi(1) = 1, \varphi(\infty) = \infty$. Exercice 2: give all φ such that $\varphi(0) = 0, \varphi(\infty) = \infty$.

IHÉS, 17 May 2016 5 / 14

-

Embedding with <u>three</u> marked points

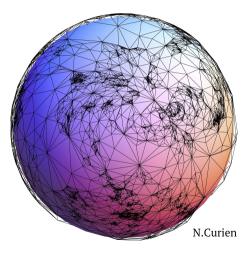
AS A WELL-DEFINED RANDOM MEASURE

Take a large random planar map with chosen marked points (z_1, z_2, z_3) and some conformal structure.

We "embed" this map on the sphere by sending conformally (z_1, z_2, z_3) to $(0, 1, \infty)$. There is a unique way to do it – the limiting

measure should be described by a random measure.

Conjecture: choose the three marked points uniformly among all vertices, convergence to Liouville measure with three insertions of weight γ .



3.5.4.3.5

Embedding with <u>two</u> marked points

AS AN EQUIVALENCE CLASS OF RANDOM MEASURES

Imagine instead we only consider two points (z_1, z_2) and we map them to $(0, \infty)$. The mapping is ill-defined! We make use of the following equivalence class:

Definition (A quotient space Q)

Two (random) measures with marked points $(D, \mu, s_1, \ldots, s_n)$ and $(D', \nu, t_1, \ldots, t_n)$ are said equivalent if there is a (random) conformal map φ from D to D' that maps (s_1, \ldots, s_n) to (t_1, \ldots, t_n) and such that $\varphi_*(\mu) = \nu$; φ_* is the pushforward defined by $\varphi_*(\mu)(A) = \mu(\varphi^{-1}(A))$.

In particular, if we fix \mathbb{C} with two marked points $(0, \infty)$, we get a family of (random) measures defined *modulo a dilatation*. One should describe this limit using a construction that is not sensible to the action of a certain subgroup of the Möbius group (here, the dilatations).

$Section \ II$

Two constructions

YICHAO HUANG

IHÉS, 17 May 2016 8 / 14

2

・ロト ・四ト ・ヨト ・ヨト

THE DKRV DEFINITION

of the unit volume Liouville measure with $n \ge 3$ insertions

DEFINITION (UNIT VOLUME LIOUVILLE MEASURE)

Let g be a metric on the sphere. Let X_g be a whole plane GFF such that $\int_{\mathbb{R}^2} X_g(z) dg = 0$. Consider

$$X_L = X_g(z) + \sum_i \alpha_i \ln |z - z_i|$$

and let $Z_{\gamma}(\mathbb{R}^2) = \int_{\mathbb{R}^2} e^{\gamma X_L(z)} d\lambda_g$ the volume form associated with X_L . The law of the unit volume Liouville measure is given by

$$\mu(A) = \int_A e^{\gamma X_U(z)} d\lambda_g$$

where
$$X_U = X_L - \frac{1}{\gamma} \ln Z_{\gamma}(\mathbb{R}^2)$$
 under the measure $Z_{\gamma}(\mathbb{R}^2) \frac{2Q - \Sigma_i \alpha_i}{\gamma} d\mathbb{P}_{X_g}$

イロト イポト イヨト イヨト

The DMS equivalence class of random measures with two γ -insertions at 0 and ∞

DEFINITION (BESSEL PROCESS ENCODING)

Every distribution on $\ensuremath{\mathbb{C}}$ can be decomposed into two parts:

- the radial part: average on circles $\partial B(0, r)$;
- the lateral noise part: fluctuation on each circles.

Let $\delta = 4 - 8/\gamma^2$ and v_{δ}^{BES} the Bessel excursion measure of dimension δ . We sample the radial part *R* in the following way:

- 1. Sample a Bessel excursion e w.r.t. v_{δ}^{BES} ;
- 2. Reparametrizing $\frac{1}{\gamma} \log e$ to have unit quadratic variation. Add (independently) the lateral noise N part by projection.

This will give us a distribution (in fact, a Gaussian field) defined modulo dilatation. Take the exponential: we get the equivalence class of random measures with two γ -insertions at 0 and ∞ .

Section III

Theorem and consequences

YICHAO HUANG

DKRV14 and DMS14

IHÉS, 17 May 2016 11 / 14

2

イロト イロト イヨト イヨト

Main Theorem of [AHS15] From DMS14 to DKRV14

For better comprehension, we state the theorem in plain words.

THEOREM (AHS15)

Take the sphere, or the whole plane.

- 1. Consider a measure in the DMS equivalence class with two γ -insertions at 0 and ∞ ;
- 2. Choose a third point z w.r.t. this measure;
- 3. Use a conformal map that shifts $(0, z, \infty)$ to $(0, 1, \infty)$;
- 4. Push-forward the chosen measure in the DMS class by this conformal map;
- 5. We get DKRV measure with three γ -insertions at 0, 1 and ∞ !

Attention! It is not trivial to describe the random conformal map in step 3.

A B N A B N

CONSEQUENCE FROM DKRV14 TO DMS14...

Remark (Consequence)

- 1. Take DKRV measure with three γ -insertions at 0, 1 and ∞ ;
- 2. Forget about the point 1, and pass to the quotient space Q;
- 3. We get the DMS equivalence class with two γ -insertions at 0 and ∞ .

A B N A B N

4 D > 4 F

э

THANKS!

ISAAC NEWTON INSTITUTE FOR MATHEMATICAL SCIENCES

YICHAO HUANG

DKRV14 and DMS14

IHÉS, 17 May 2016 14 / 14

イロト イポト イヨト イヨト 一日