Perturbations of a large matrix by random matrices

Alkéos Michaïi

Laboratoire MAP5 - Université Paris-Descartes

Les probabibilités de demain - IHÉS - 2017

Main topic of random matrix theory

We consider a $n \times n$ matrix $X_n = (x_{i,j}^{(n)})$ whose entries are random variables.

The main topic of this field is the study of the eigenvalues and eigenvectors of X_n as $n \to \infty$.

The empirical spectral measure

Let us note $\lambda_1, \ldots, \lambda_n$ the eigenvalues of X_n . The empirical spectral measure of X_n is the probability measure defined by:

$$\mu_{X_n} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$$

The empirical spectral measure

Let us note $\lambda_1, \ldots, \lambda_n$ the eigenvalues of X_n .

The empirical spectral measure of X_n is the probability measure defined by:

$$\mu_{X_n} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i}$$

For example, in the case of a Hermitian random matrix X_n , for $A \subseteq \mathbb{R}$:

$$\mu_{X_n}(A) = \frac{1}{n} \# \{ \lambda_i \in A \; ; \; i \in \{1, \ldots, n\} \}$$

Wigner's Semicircle Law (1958)

If $X_n = (x_{i,i}^{(n)})$ is a $n \times n$ real symmetric random matrix such that

1.
$$\mathbb{E}(x_{i,i}^{(n)}) = 0$$
 for $1 \le i \le j \le n$

2.
$$\mathbb{E}(|x_{i,i}^{(n)}|^2) = 1$$
 for $1 \le i < j \le n$

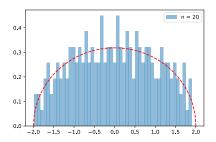
3. for all
$$k \in \mathbb{N}$$
, $\sup_{i,j} \mathbb{E}(|x_{i,j}^{(n)}|^k) = C(k) < \infty$

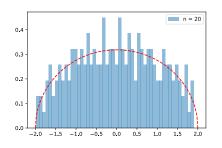
then

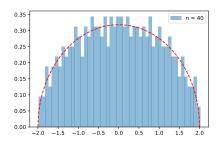
$$\mu_{\underline{x_n}} \xrightarrow{\text{dist.}} \mu_{sc}$$

for

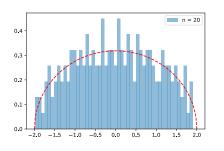
$$d\mu_{sc}(t) = \frac{1}{2\pi} \sqrt{4 - t^2} \, \mathbb{1}_{[-2,2]}(t) dt$$

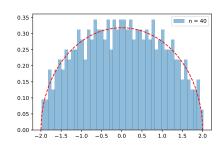


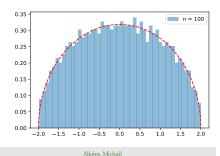


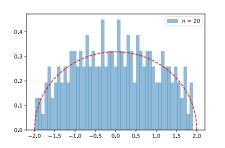


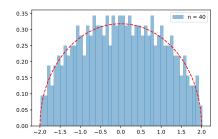
4 / 21

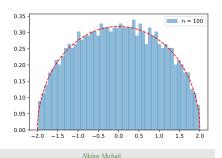


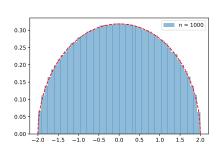












A pertubation problem

How the spectral properties of an operator are altered when the operator is subject to a small perturbation?

 H_n

• H_n is a deterministic Hermitian matrix.

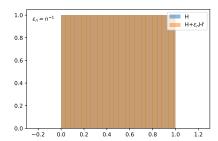
$$H_n + H'_n$$

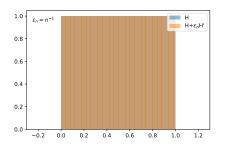
- H_n is a deterministic Hermitian matrix.
- H'_n is a random Hermitian matrix which operator norm is of order 1.

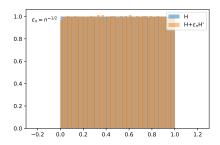
Alkéos Michail

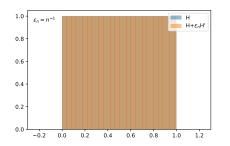
$$H_n + \varepsilon_n . H'_n$$

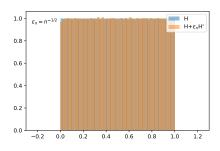
- H_n is a deterministic Hermitian matrix.
- H'_n is a random Hermitian matrix which operator norm is of order 1.
- (ε_n) is a positive sequence such that $\varepsilon_n \longrightarrow 0$

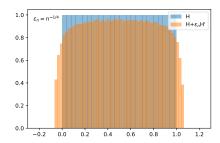


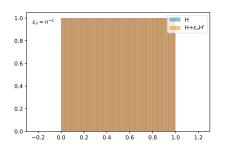


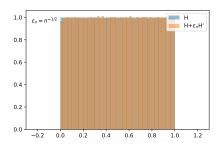


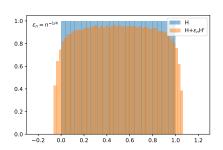


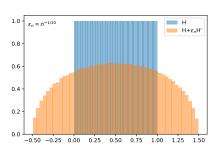












Rewriting of the problem

As any Hermitian matrix can be diagonalized by a unitary matrix, \emph{U} , we can rewrite this problem as :

$$\underbrace{UH_nU^*}_{D_n} + \varepsilon_n \cdot \underbrace{UH'_nU^*}_{X_n}$$

where D_n is a diagonal matrix and X_n an hermitian matrix.

$$D_n^{\varepsilon} := D_n + \varepsilon_n X_n$$

Let denotes

- μ_n^{ε} the empirical spectral distribution of D_n^{ε}
- μ_n the empirical spectral distribution of D_n

Our aim is to give a pertubative expansion of μ_n^{ε} around μ_n .

¹Proved in collaboration with N.Enriquez and F.Benaych-Georges

• the pertubative regime $(\varepsilon_n \ll n^{-1})$:

$$\mu_n^{\varepsilon} \approx \mu_n + \frac{\varepsilon_n}{n} dZ$$

Pertubations by random matrices 10 / 21

¹Proved in collaboration with N.Enriquez and F.Benaych-Georges

• the pertubative regime $(\varepsilon_n \ll n^{-1})$:

$$\mu_n^{\varepsilon} \approx \mu_n + \frac{\varepsilon_n}{n} dZ$$

• the critical regime $(\varepsilon_n \sim \frac{c}{n})$:

$$\mu_n^{\varepsilon} \approx \mu_n + \frac{\varepsilon_n}{n} (c dF + dZ)$$

Alkéos Michail Pertubations by random matrices

¹Proved in collaboration with N.Enriquez and F.Benaych-Georges

• the pertubative regime $(\varepsilon_n \ll n^{-1})$:

$$\mu_n^{\varepsilon} \approx \mu_n + \frac{\varepsilon_n}{n} dZ$$

• the critical regime $(\varepsilon_n \sim \frac{c}{n})$:

$$\mu_n^{\varepsilon} \approx \mu_n + \frac{\varepsilon_n}{n} (c dF + dZ)$$

• the semi-pertubative regime $(n^{-1} \ll \varepsilon_n \ll 1)$:

$$\mu_n^{\varepsilon} \approx \mu_n + \varepsilon_n^2 \mathrm{d}F$$

Where F is a deterministic function and dZ a Gaussian random linear form dZ on $C^6(\mathbb{R})$, both depends only on the limit parameters of the model.

10 / 21

¹Proved in collaboration with N.Enriquez and F.Benaych-Georges

The case of the semi-pertubative regime

$$\mu_n^{arepsilon} pprox \mu_n + arepsilon_n^2 \mathrm{d} F$$
 if $n^{-1} \ll arepsilon_n \ll 1$

can be precised:

The case of the semi-pertubative regime

$$\mu_n^{\varepsilon} \approx \mu_n + \varepsilon_n^2 dF$$

if
$$n^{-1} \ll \varepsilon_n \ll 1$$

can be precised:

$$\mu_n^{\varepsilon} \approx \mu_n + \varepsilon_n^2 \mathrm{d}F + \frac{\varepsilon_n}{n} \mathrm{d}Z$$

if
$$\mathit{n}^{-1} \ll \varepsilon_{\mathit{n}} \ll \mathit{n}^{-1/3}$$

The case of the semi-pertubative regime

$$\mu_n^{\varepsilon} \approx \mu_n + \varepsilon_n^2 \mathrm{d}F$$

if
$$n^{-1} \ll \varepsilon_n \ll 1$$

can be precised:

$$\mu_n^{\varepsilon} \approx \mu_n + \varepsilon_n^2 dF + \frac{\varepsilon_n}{n} dZ$$

$$\mu_n^{\varepsilon} \approx \mu_n + \varepsilon_n^2 dF + \varepsilon_n^4 G + \frac{\varepsilon_n}{n} dZ$$

if
$$\mathit{n}^{-1} \ll \varepsilon_{\mathit{n}} \ll \mathit{n}^{-1/3}$$

if
$$n^{-1/3} \ll arepsilon_n \ll n^{-1/5}$$

The case of the semi-pertubative regime

$$\mu_n^\varepsilon \; \approx \; \mu_n + \varepsilon_n^2 \mathrm{d} F \qquad \qquad \mathrm{if} \; n^{-1} \ll \varepsilon_n \ll 1$$

can be precised:

$$\begin{array}{ll} \mu_n^\varepsilon \; \approx \; \mu_n + \varepsilon_n^2 \mathrm{d}F + \frac{\varepsilon_n}{n} \mathrm{d}Z & \text{if } n^{-1} \ll \varepsilon_n \ll n^{-1/3} \\ \\ \mu_n^\varepsilon \; \approx \; \mu_n + \varepsilon_n^2 \mathrm{d}F + \varepsilon_n^4 G + \frac{\varepsilon_n}{n} \mathrm{d}Z & \text{if } n^{-1/3} \ll \varepsilon_n \ll n^{-1/5} \\ \\ \vdots & \\ \mu_n^\varepsilon \; \approx \; \mu_n + \text{(p deterministic terms)} + \frac{\varepsilon_n}{n} \mathrm{d}Z & \text{if } n^{\frac{-1}{2p-1}} \ll \varepsilon_n \ll n^{\frac{-1}{2p+1}} \end{array}$$

Alkéos Michail

Pertubations by random matrices

Theorem (F.Benaych-Georges, N.Enriquez and A.M.)

For all compactly supported C^6 function on \mathbb{R} , the following convergences hold:

• Perturbative regime: if $\varepsilon_n \ll n^{-1}$, then,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}-\mu_n)(\phi) \xrightarrow[n\to\infty]{\text{dist.}} Z_{\phi}.$$

Theorem (F.Benaych-Georges, N.Enriquez and A.M.)

For all compactly supported C^6 function on \mathbb{R} , the following convergences hold:

• Perturbative regime: if $\varepsilon_n \ll n^{-1}$, then,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}-\mu_n)(\phi) \stackrel{\text{dist.}}{\underset{n\to\infty}{\longrightarrow}} Z_{\phi}.$$

• Critical regime: if $\varepsilon_n \sim c/n$, with c constant, then,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}-\mu_n)(\phi) \stackrel{\text{dist.}}{\underset{n\to\infty}{\longrightarrow}} -c\int \phi'(s)F(s)\mathrm{d}s + Z_{\phi}.$$

Theorem (F.Benaych-Georges, N.Enriquez and A.M.)

For all compactly supported C^6 function on \mathbb{R} , the following convergences hold:

• Perturbative regime: if $\varepsilon_n \ll n^{-1}$, then,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}-\mu_n)(\phi) \xrightarrow[n\to\infty]{\text{dist.}} Z_{\phi}.$$

• Critical regime: if $\varepsilon_n \sim c/n$, with c constant, then,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}-\mu_n)(\phi) \stackrel{\text{dist.}}{\underset{n\to\infty}{\longrightarrow}} -c\int \phi'(s)F(s)\mathrm{d}s + Z_{\phi}.$$

• Semi-perturbative regime: if $n^{-1} \ll \varepsilon_n \ll n^{-1/3}$, then,

$$n\varepsilon_n^{-1}\left((\mu_n^\varepsilon-\mu_n)(\phi)+\varepsilon_n^2\int\phi'(s)F(s)\mathrm{d}s\right)\quad \overset{\mathrm{dist.}}{\underset{n\to\infty}{\longrightarrow}}\quad Z_\phi.$$

Random term of the expansion

The random term of the expansion is a random field, $(Z_{\phi})_{\phi \in \mathcal{C}^{6}}$, indexed by the space of complex \mathcal{C}^{6} functions on \mathbb{R} , which can be represented as

$$Z_{\phi} = \int_0^1 \sigma_d(t) \phi'(f(t)) \mathrm{d}B_t$$

where, (B_t) is the standard one-dimensional Brownian motion.

 $\rightarrow \sigma_d$ and f are limit parameters of the diagonal entries of X_n and D_n

Alkéos Michail

Pertubations by random matrices

Idea of the proof

1. We prove the result for functions $\varphi_z(x) := \frac{1}{z-x}$. In other words, we prove a convergence of the resolvent matrices of D_n^ε and D_n .

Idea of the proof

- 1. We prove the result for functions $\varphi_Z(x) := \frac{1}{z-x}$. In other words, we prove a convergence of the resolvent matrices of D_n^ε and D_n .
- 2. Then, we extend this convergence to the larger class of compactly supported \mathcal{C}^6 functions on \mathbb{R} , thanks to the Helffer-Sjöstrand formula and a Lemma of Shcherbina and Tirozzi.

First step of the proof: expansion of the resolvent matrix

For
$$\varphi_z(x):=rac{1}{z-x}$$
 and for any $z\in\mathbb{C}\setminus\mathbb{R}$,

$$(\mu_n^{\varepsilon} - \mu_n)(\varphi_z) = \frac{1}{n} \operatorname{Tr} \frac{1}{z - D_n^{\varepsilon}} - \frac{1}{n} \operatorname{Tr} \frac{1}{z - D_n}$$

First step of the proof: expansion of the resolvent matrix

For
$$\varphi_z(x) := \frac{1}{z-x}$$
 and for any $z \in \mathbb{C} \setminus \mathbb{R}$,

$$(\mu_n^{\varepsilon} - \mu_n)(\varphi_z) = \frac{1}{n} \operatorname{Tr} \frac{1}{z - D_n^{\varepsilon}} - \frac{1}{n} \operatorname{Tr} \frac{1}{z - D_n}$$
$$= A_n(z) + B_n(z) + C_n(z) + R_n^{\varepsilon}(z).$$

First step of the proof: expansion of the resolvent matrix

$$A_{n}(z) := \frac{\varepsilon_{n}}{n} \operatorname{Tr} \frac{1}{z - D} X \frac{1}{z - D}$$

$$B_{n}(z) := \frac{\varepsilon_{n}^{2}}{n} \operatorname{Tr} \frac{1}{z - D} X \frac{1}{z - D} X \frac{1}{z - D}$$

$$C_{n}(z) := \frac{\varepsilon_{n}^{3}}{n} \operatorname{Tr} \frac{1}{z - D} X \frac{1}{z - D} X \frac{1}{z - D} X \frac{1}{z - D}$$

$$R_{n}^{\varepsilon}(z) := \frac{\varepsilon_{n}^{4}}{n} \operatorname{Tr} \frac{1}{z - D} X \frac{1}$$

$$A_n(z) \xrightarrow[n\to\infty]{\text{dist.}} Z_{\phi_z}$$

$$B_n(z) := \frac{\varepsilon_n^2}{n} \operatorname{Tr} \frac{1}{z - D} X \frac{1}{z - D} X \frac{1}{z - D}$$

$$C_n(z)$$
 := $\frac{\varepsilon_n^3}{n} \operatorname{Tr} \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D}$

$$R_n^{\varepsilon}(z) := \frac{\varepsilon_n^4}{n} \operatorname{Tr} \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D^{\varepsilon}}.$$

$$A_n(z) \xrightarrow{\text{dist.}} Z_{\phi_z}$$

$$B_n(z)$$
 $\xrightarrow{\mathbb{P}}$ the previously discussed deterministic term

$$C_n(z)$$
 := $\frac{\varepsilon_n^3}{n} \operatorname{Tr} \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D}$

$$R_n^\varepsilon(z) \qquad := \qquad \frac{\varepsilon_n^4}{n} \operatorname{Tr} \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} \varepsilon.$$

$$A_n(z) \xrightarrow{\text{dist.}} Z_{\phi_z}$$

$$B_n(z)$$
 $\xrightarrow{\mathbb{P}}$ the previously discussed deterministic term

$$C_n(z)$$
 $\xrightarrow[n\to\infty]{\mathbb{P}}$ 0

$$R_n^{\varepsilon}(z) \qquad := \qquad \frac{\varepsilon_n^4}{n} \operatorname{Tr} \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} X \frac{1}{z-D} \varepsilon.$$

$$A_n(z)$$
 $\xrightarrow{\text{dist.}} Z_{\phi_z}$

$$B_n(z)$$
 $\xrightarrow{\mathbb{P}}$ the previously discussed deterministic term

$$C_n(z)$$
 $\xrightarrow{\mathbb{P}}$ 0

$$R_n^{\varepsilon}(z)$$
 is negligible (in probability)

To extend the convergence from functions $\varphi_z(x) = \frac{1}{z-x}$ to $\mathcal{C}_K^6(\mathbb{R})$ functions, we proceed in two steps:

• (Lemma of Shcherbina and Tirozzi) If s>5, then for any $\phi\in\mathcal{H}_s$,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}(\phi) - \mathbb{E}[\mu_n^{\varepsilon}(\phi)]) \xrightarrow[n \to \infty]{\text{dist.}} Z_{\varphi}.$$

Lemma

Let \mathcal{L}_1 denote the linear span of the functions $\varphi_z(x) := \frac{1}{z-x}$, for $z \in \mathbb{C} \setminus \mathbb{R}$. Then the space \mathcal{L}_1 is dense in \mathcal{H}_s , for any s > 0.

To extend the convergence from functions $\varphi_z(x) = \frac{1}{z-x}$ to $\mathcal{C}_K^6(\mathbb{R})$ functions, we proceed in two steps:

• (Lemma of Shcherbina and Tirozzi) If s>5, then for any $\phi\in\mathcal{H}_s$,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}(\phi) - \mathbb{E}[\mu_n^{\varepsilon}(\phi)]) \xrightarrow[n \to \infty]{\text{dist.}} Z_{\varphi}.$$

Lemma

Let \mathcal{L}_1 denote the linear span of the functions $\varphi_z(x) := \frac{1}{z-x}$, for $z \in \mathbb{C} \setminus \mathbb{R}$. Then the space \mathcal{L}_1 is dense in \mathcal{H}_s , for any s > 0.

• (Hellfer–Sjöstrand formula) For any compactly supported function which is \mathcal{C}^6 on \mathbb{R} , our initial process and $n\varepsilon_n^{-1}(\mu_n^\varepsilon(\phi)-\mathbb{E}[\mu_n^\varepsilon(\phi)])$ are equivalent.

To extend the convergence from functions $\varphi_z(x) = \frac{1}{z-x}$ to $\mathcal{C}_K^6(\mathbb{R})$ functions, we proceed in two steps:

• (Lemma of Shcherbina and Tirozzi) If s>5, then for any $\phi\in\mathcal{H}_s$,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}(\phi) - \mathbb{E}[\mu_n^{\varepsilon}(\phi)]) \xrightarrow[n \to \infty]{\text{dist.}} Z_{\varphi}.$$

Lemma

Let \mathcal{L}_1 denote the linear span of the functions $\varphi_z(x) := \frac{1}{z-x}$, for $z \in \mathbb{C} \setminus \mathbb{R}$. Then the space \mathcal{L}_1 is dense in \mathcal{H}_s , for any s > 0.

• (Hellfer–Sjöstrand formula) For any compactly supported function which is \mathcal{C}^6 on \mathbb{R} , our initial process and $n\varepsilon_n^{-1}(\mu_n^\varepsilon(\phi)-\mathbb{E}[\mu_n^\varepsilon(\phi)])$ are equivalent.

Thus, as $\mathcal{C}_{\kappa}^6 \subseteq \mathcal{H}_5$,

To extend the convergence from functions $\varphi_z(x) = \frac{1}{z-x}$ to $\mathcal{C}_K^6(\mathbb{R})$ functions, we proceed in two steps:

• (Lemma of Shcherbina and Tirozzi) If s>5, then for any $\phi\in\mathcal{H}_s$,

$$n\varepsilon_n^{-1}(\mu_n^{\varepsilon}(\phi) - \mathbb{E}[\mu_n^{\varepsilon}(\phi)]) \xrightarrow[n \to \infty]{\text{dist.}} Z_{\varphi}.$$

Lemma

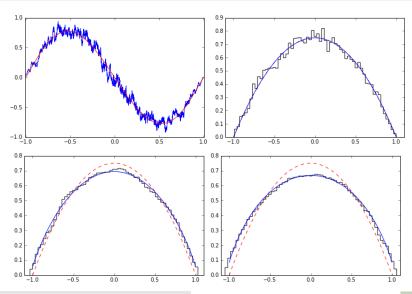
Let \mathcal{L}_1 denote the linear span of the functions $\varphi_z(x) := \frac{1}{z-x}$, for $z \in \mathbb{C} \setminus \mathbb{R}$. Then the space \mathcal{L}_1 is dense in \mathcal{H}_s , for any s > 0.

• (Hellfer-Sjöstrand formula) For any compactly supported function which is \mathcal{C}^6 on \mathbb{R} , our initial process and $n\varepsilon_n^{-1}(\mu_n^\varepsilon(\phi)-\mathbb{E}[\mu_n^\varepsilon(\phi)])$ are equivalent.

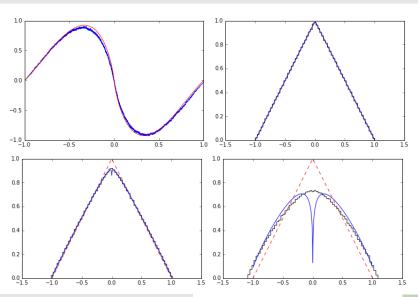
Thus, as $\mathcal{C}_{\mathcal{K}}^{6} \subseteq \mathcal{H}_{5}$, for any compactly supported function ϕ which is \mathcal{C}^{6} on \mathbb{R} , the processes we studied are also converging to Z_{ϕ} .

Alkéos Michaïl Pertubations by random matrices

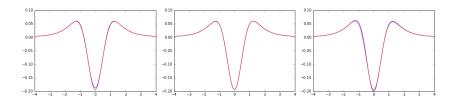
Perturbation of the parabolic pulse distribution by a GOE matrix



Perturbation of the triangular pulse distribution by a GOE matrix



Perturbation of the triangular pulse distribution by a GOE matrix



Merci