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The model of deformed random fields.

Let X : R2 → R be a stationary and isotropic random field:
for any translation τ , for any rotation ρ in R2,

X ◦ τ law
= X and X ◦ ρ law

= X .

We write C (t) = Cov(X (t),X (0)) its covariance function.

We call X the underlying field.

let θ : R2 → R2 be a bijective, bicontinuous, deterministic application
satisfying θ(0) = 0, which we will call a deformation.

Xθ = X ◦ θ : R2 → R is the deformed random field constructed with the
underlying field X and the deformation θ.

Two types of questions :

Invariance properties of the deformed field

Inverse problem: identification of θ thanks to (partial) observations of Xθ.
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First observation: the invariance properties are not preserved in general.

Level sets of a realization of a Gaussian

stationary and isotropic random field X with

Gaussian covariance C(x) = exp(−‖x‖2).

Level sets of a realization of Xθ constructed

with θ : (s, t) 7→ (s0.6, t1.4) and with the

underlying field X .

Question

Which are the deformations that preserve stationarity and isotropy ?
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References

Spatial statistics (Sampson and Guttorp, 1992).

Image analysis : ”shape from texture” issue (Clerc-Mallat, 2002).

Numerous domains of application in physics:
for instance, used in cosmology for the modelization of the CMB and mass

reconstruction in the universe.

Also studied by Cabaña, 1987,Perrin-Meiring, 1999; Perrin-Senoussi,
2000, etc..
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Cases of isotropy (in law)
Our assumptions

The underlying field X must satisfy the following assumptions :

(H)

{
X is stationary and isotropic,

X is centered and admits a second moment.

The deformation θ belongs to the set

D0(R2) = {θ : R2 → R2 / θ is continous and bijective,

with a continuous inverse,

such that θ(0) = 0}
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Cases of isotropy

Problem

Which are the deformations θ such that for any underlying random field
X, Xθ is isotropic ?

Example : elements of SO(2) : rotations of R2.

Another problem : Which are the deformations θ such that

for a fixed underlying random field X , Xθ is isotropic ?

For the proof.
Invariance of the covariance function of Xθ under rotations :

∀ρ ∈ SO(2), ∀(x , y) ∈ (R2)2,

Cov(Xθ(ρ(x)),Xθ(ρ(y))) = Cov(Xθ(x),Xθ(y))

C(θ(ρ(x))− θ(ρ(y))) = C(θ(x)− θ(y))

Chose the covariance function C(x) = exp(−‖x‖2) to obtain

∀ρ ∈ SO(2), ∀(x , y) ∈ (R2)2, ‖θ(ρ(x))− θ(ρ(y))‖ = ‖θ(x)− θ(y)‖.

Polar representation of θ.
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Cases of isotropy

Answer to the problem

Spiral deformations are the deformations preserving isotropy for any
underlying field X .

Notations : θ̂ polar representation of θ :
θ̂ : (0,+∞)× Z/2πZ→ (0,+∞)× Z/2πZ (r , ϕ) 7→ (θ̂1(r , ϕ), θ̂2(r , ϕ)).

Definition

A deformation θ ∈ D0(R2) is a spiral deformation if there exist
f : (0,+∞)→ (0,+∞) strictly increasing and surjective,
g : (0,+∞)→ Z/2πZ and ε ∈ {±1} such that θ satisfies

∀(r , ϕ) ∈ (0,+∞)× Z/2πZ, θ̂(r , ϕ) = (f (r), g(r) + εϕ).
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Simulations of fields deformed with spiral deformations

Level sets of a realization of Xθ, with a

deformation θ : x 7→ ‖x‖ x and X

Gaussian with Gaussian covariance.

Level sets of a realization of Xθ, with θ a

deformation with polar representation

θ̂ : (r , ϕ) 7→ (
√

r , r + ϕ) and X Gaussian

with Gaussian covariance.

J. Fournier Deformed random fields 8 / 20



Excursion sets

Let u ∈ R be a fixed level,

let T be a rectangle or a segment
in R2,

let Au(Xθ,T ) be the excursion set
of Xθ restricted to T above level u:

Au(Xθ,T ) = {t ∈ T /Xθ(t) ≥ u}

Level sets and excursion sets of a realization of Xθ, with θ : (s, t) 7→ (s0.6, t) defined on

(0,+∞)2 and X Gaussian with Gaussian covariance.
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Euler characteristic χ of excursion sets

Euler characteristic: integer-valued and additive functional defined on a
large class of compact sets.

Heuristic definition for a compact set G ⊂ R2 of dimension 1 or 2

d = 1, χ(G ) = #(disjoint components in G);

d = 2, χ(G ) = #(connected components in G)−#(holes in G).

The Euler characteristic is a homotopy invariant, hence

Au(Xθ,T ) = θ−1(Au(X , θ(T )) ⇒ χ(Au(Xθ,T )) = χ(Au(X , θ(T ))) .

and we can use an expectation formula proven for stationary and isotropic

random fields in Adler-Taylor, 2007.
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Additional assumptions

(H’)



X is Gaussian,

X is stationary and isotropic,

X is almost surely of class C2,

X is centered, C (0) = 1 and C ′′(0) = −I2,

a non-degeneracy assumption on X(t), for every t ∈ R2.

The deformation θ belongs to the set

D2(R2) = {θ : R2 → R2 / θ of class C2 and bijective,

with an inverse of class C2,

such that θ(0) = 0}
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Formulas for the expectation of E[χ(Au(Xθ,T ))]

• If T is a segment in R2, writing |θ(T )|1 the one-dimensional Hausdorff measure
of θ(T ),

E[χ(Au(Xθ,T ))] = e−u2/2 |θ(T )|1
2π

+ Ψ(u) ,

where Ψ(u) = P(Y > u) for Y ∼ N (0, 1).

• If T ⊂ R2 is a rectangle, writing |θ(T )|2 the two-dimensional Hausdorff
measure of θ(T ),

E[χ(Au(Xθ,T ))] = e−u2/2

(
u
|θ(T )|2
(2π)3/2

+
|∂θ(T )|1

4π

)
+ Ψ(u) ,

where ∂G is the frontier of G .
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Writing θ = (θ1, θ2) the coordinate functions of θ, let Jθ(s, t) be the Jacobian
matrix of θ at point (s, t) ∈ R2 :

Jθ(s, t) =

(
∂θ1

∂s (s, t) ∂θ1

∂t (s, t)
∂θ2

∂s (s, t) ∂θ2

∂t (s, t)

)
=
(
J1
θ (s, t) J2

θ (s, t)
)
.

Note that the Jacobian determinant is either positive on R2 or negative on R2.

• |θ([0, s]× [0, t])|2 =
∫ s

0

∫ t

0
| det(Jθ(x , y))| dx dy

• |θ([0, s]× {t})|1 =
∫ s

0

√
∂xθ1(x , t)2 + ∂xθ2(x , t)2 dx =

∫ s

0
‖J1
θ (x , t)‖ dx

• |θ({s} × [0, t])|1 =
∫ t

0

√
∂yθ1(s, y)2 + ∂yθ2(s, y)2 dy =

∫ t

0
‖J2
θ (s, y)‖ dy .

Consequence : general idea

Condition / information on E[χ(Au(X , θ(T )))] (T rectangle or segment)
implies condition / information on the Jacobian matrix of θ, hence on θ.
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A weak notion of isotropy linked to excursion sets

Let X be an underlying field satisfying (H’).

Definition (χ-isotropic deformation)

A deformation θ ∈ D2(R2) is χ-isotropic if for any rectangle T in R2, for
any u ∈ R and for any ρ ∈ SO(2),

E[χ(Au(Xθ, ρ(T ))] = E[χ(Au(Xθ,T )].

First observation : θ spiral deformation ⇒ θ χ-isotropic deformation

Therefore, if θ χ-isotropic, Xθ can be considered as weakly isotropic.

Definition depending on the underlying field X .

Aim : Prove that

θ χ-isotropic deformation ⇒ θ spiral deformation.
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First characterization

The χ-isotropic condition is also true for T segment.

Formulas for E[χ(Au(Xθ,T )] involve Jθ,
formulas for E[χ(Au(Xθ, ρ(T ))] involve Jθ◦ρ.

Lemma 1

A deformation θ ∈ D2(R2) is χ-isotropic if and only if for any ρ ∈ SO(2),
for any x ∈ R2,{

(i) ∀k ∈ {1, 2}, ‖Jk
θ◦ρ(x)‖ = ‖Jk

θ (x)‖,
(ii) det(Jθ◦ρ(x)) = det(Jθ(x)).
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Second characterization and conclusion of the proof

A translation of the first lemma in polar coordinates brings:

Lemma 2

A deformation θ ∈ D2(R2) is a χ-isotropic deformation if and only if
functions 

(r , ϕ) 7→ (∂r θ̂1(r , ϕ))2 + (θ̂1(r , ϕ) ∂r θ̂2(r , ϕ))2

(r , ϕ) 7→ (∂ϕθ̂1(r , ϕ))2 + (θ̂1(r , ϕ) ∂ϕθ̂2(r , ϕ))2

(r , ϕ) 7→ θ̂1(r , ϕ) det(Jθ̂(r , ϕ))

are radial, i.e. if they do not depend on ϕ.

This differential system is solved in Briant, Fournier (2017, submitted) and
the set of solutions is exactly the set of spiral deformations.
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Chain of equalities

We write

S the set of spiral deformations in D2(R2),

I the set of deformations θ ∈ D2(R2) such that for any underlying
field X satisfying (H′), Xθ is isotropic,

for a fixed underlying field X satisfying (H′),

I(X ) = {θ ∈ D2(R2) such that Xθ is isotropic}.

X the set of χ-isotropic deformations.

Corollary

Let X be a stationary and isotropic random field satisfying (H′). Then
S = I = I(X ) = X .

Conclusion : A weak notion of isotropy based on excursion sets coincides
with isotropy in law.
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Identification of the deformation

Different methods exist, but most of them require to know the deformed field on a

whole window (see Guyon-Perrin (2000), Clerc-Mallat (2003), Anderes-Stein (2008),

Anderes-Chatterjee (2009), Anderes-Guiness (2016), etc.).

Framework

We assume that the deformation θ is unknown.

We only have at our disposal sparse data: the observations of one excursion

set of Xθ restricted to a certain window above a fixed level u 6= 0.

(Additional assumptions on θ)

Claim

Let us assume that, for one level u 6= 0, we know E[χ(Au(Xθ,T ))] for every
rectangle or segment T in a fixed window W .

Then at each point x ∈W , we may compute ‖J1
θ (x)‖, ‖J1

θ (x)‖ and det(Jθ(x)).

Consequently, the complex dilatation at point x is determined, up to complex

conjugation.
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Thanks for your attention !
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