ÉCOLE POLYTECHNIQUE

Raphaël Forien CMAP - École Polytechnique

GENE FLOW ACCROSS A GEOGRAPHICAL BARRIER

Les Probabilités de demain IHES - 11 mai 2017

Figure: Stepping stone model with a barrier

from Nagylaki 1976

At each generation,

- the N individuals in each colony are replaced by new individuals
- a proportion 1 m of them are the offspring of (uniformly chosen) parents in the same colony,
- a proportion m are the offspring of parents in neighbouring colonies

Figure: Stepping stone model with a barrier from Nagylaki 1976

At each generation,

- the N individuals in $\pm \varepsilon$ are replaced by new individuals
- a proportion $1 \frac{1+c}{2}m$ of them are the offspring of (uniformly chosen) parents in the same colony,
- a proportion $\frac{1}{2}cm$ are the offspring of parents in $\mp \varepsilon$ and a proportion $\frac{1}{2}m$ come from colony $\pm 3\varepsilon$

EVOLUTION OF ALLELE FREQUENCIES

Individuals are of two types, 0 and 1. Parental type is inherited by the offspring.

Figure: Evolution of allele frequencies with a barrier

 ξ_t : position of the ancestor of a (uniformly) sampled individual t generations in the past = random walk on \mathbb{Z} with transition probabilities given by the migration matrix of the stepping stone model.

$$p(t,x) = \mathbb{P}_x \left(\xi_t \in [0,\infty) \right)$$

APPLICATIONS

Goal : detect barriers to gene flow using genetic data by estimating the age of the most recent common ancestor for different pairs of individuals.

 ξ_t : random walk not convenient, no explicit formulas for the law of ξ_t .

MAIN RESULT

For a sequence $(c_n)_{n \in \mathbb{N}}$, let $(\xi_n(t))_{t \ge 0}$ be a random walk on \mathbb{Z} with the corresponding transition probabilities. Set $X_n(t) = \frac{1}{\sqrt{n}}\xi_n(nt)$

Theorem 1 Suppose $\sqrt{n}c_n \xrightarrow[n \to \infty]{} 2\gamma \in [0, +\infty]$, then

$$X_n \xrightarrow[n \to \infty]{sko} X.$$

The process $(X(t))_{t\geq 0}$ is (the projection on \mathbb{R} of) a Markov process on $(-\infty, 0^{-}] \cup [0^{+}, +\infty)$.

When $\gamma \in (0, \infty)$, we call X partially reflected Brownian motion.

Start from standard Brownian motion and keep only the excursions outside of $\left[-\frac{1}{2\gamma}, \frac{1}{2\gamma}\right]$.

Figure: Speed and scale construction of partially reflected Brownian motion

Start from standard Brownian motion and keep only the excursions outside of $\left[-\frac{1}{2\gamma}, \frac{1}{2\gamma}\right]$.

Figure: Speed and scale construction of partially reflected Brownian motion

Start from standard Brownian motion and keep only the excursions outside of $\left[-\frac{1}{2\gamma}, \frac{1}{2\gamma}\right]$.

Figure: Speed and scale construction of partially reflected Brownian motion

Start from standard Brownian motion and keep only the excursions outside of $\left[-\frac{1}{2\gamma}, \frac{1}{2\gamma}\right]$.

Figure: Speed and scale construction of partially reflected Brownian motion

Start from standard Brownian motion and keep only the excursions outside of $\left[-\frac{1}{2\gamma}, \frac{1}{2\gamma}\right]$.

Figure: Speed and scale construction of partially reflected Brownian motion

Start from standard Brownian motion and keep only the excursions outside of $\left[-\frac{1}{2\gamma}, \frac{1}{2\gamma}\right]$.

Figure: Speed and scale construction of partially reflected Brownian motion

Start from reflected Brownian motion $(W_t)_{t\geq 0}$, and flip it when its local time at 0 reaches an exponential variable.

SKETCH OF PROOF FOR THE CONVERGENCE RESULT

 ξ_t random walk on \mathbb{Z} with transition probabilities

 T_i^n : time of the *i*-th crossing of $\{\pm \frac{1}{\sqrt{n}}\}$ by X_n

Proof of Theorem 1.

- 1. $|X_n|$ converges to reflected Brownian motion as $n \to \infty$,
- 2. $\{L_n(T_{i+1}^n) L_n(T_i^n), i \ge 0\}$ converges to an iid sequence of $\mathcal{E}(2\gamma)$,
- 3. the two are asymptotically independent.

TRANSITION DENSITIES

We have an explicit formula for the transition densities of $(X_t)_{t\geq 0}$.

Figure: Comparison of transition probabilities for the random walk and transition densities for partially reflected Brownian motion

 $p(t,x) = \mathbb{P}_x \left(X_t \in [0^+, +\infty) \right)$

Thank you for your attention !