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Processes matching marginal distributions

Assume that the market gives us the prices of European call options
C(T ,K ) for all T ,K ≥ 0, on the underlying asset S

For hedging purposes, we want a model (St )t≥0 calibrated to those prices:

∀T ,K ≥ 0, C(T ,K ) = E
[
e−rT (ST −K )+

]

By Breeden and Litzenberger (1978), marginal laws are equivalent to
market prices of European Calls C(T ,K )

Stochastic processes matching given marginals is a question arising in
mathematical finance

Dupire calibrated Local Volatility model (1992):

dSt = rStdt + σDup(t,St )StdWt
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LSV models

Dupire’s model gives a perfect fit to the market prices of call options, but
forward laws are unrealistic

Motivation: get processes with richer dynamics and satisfying the same
marginal constraints

Lipton (2002) and Piterbarg (2006): Local and Stochastic Volatility (LSV)
model

dSt = rStdt + f (Yt )σ(t,St )StdWt

’Adding uncertainty’ to LV models by a random multiplicative factor
f (Yt ) > 0, where (Yt )t≥0 is a stochastic process
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Gyongy’s Theorem

Let X be an Ito process satisfying

dXt = α(t,ω)dt + β(t,ω)dWt

where α, β are adapted processes. Under mild assumptions, there exists a
Markov process Yt satisfying

dYt = a(t,Yt )dt + b(t,Yt )dWt

where Xt , Yt have the same distribution for all t ≥ 0 and Y can be
constructed with

a(t, y) =E[α(t,ω)|Xt = y ]
b2(t, y) =E[β2(t,ω)|Xt = y ]
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Calibration of LSV Models

The LSV model is calibrated to (C(T ,K ))T ,K≥0 if

E
[
(f (Yt )σ(t,St )St )

2|St = x
]
= (σDup(t, x)x)2

σ(t, x) =
σDup(t, x)√

E [f 2(Yt )|St = x ]

The obtained SDE is nonlinear in the sense of McKean:

dSt = rStdt +
f (Yt )√

E[f 2(Yt )|St ]
σDup(t,St )StdWt .

Open problems : Global existence and uniqueness to LSV models ?
Convergence of the particles method used to simulate the SDE nonlinear
in the sense of McKean ?
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A RSLV model

We consider the following dynamics (RSLV):

dSt = rStdt +
f (Yt )√

E [f 2(Yt )|St ]
σDup(t,St )StdWt

where (Yt )t≥0 takes values in Y = {y1, ..., yd}, and

P (Yt+dt = yj |Yt = yi , log St = x) = qij (x)dt

Switching diffusion, special case of LSV model

Jump distributions and intensities are functions of the asset level
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Existence to SDE (RSLV)

Theorem

Condition (C): there exists a symmetric positive definite Γ ∈ Rd×d such that
for all k ∈ {1, . . . , d}, the d × d matrix

Γ(k)
ij =

f 2(yi ) + f 2(yj )

2 (Γij + Γkk − Γik − Γjk ) is positive definite on e⊥k .

Under (C) and regularity conditions on σDup , q, there exists a weak solution to
the SDE (RSLV).

If d = 2, (C) is satisfied : choice Γ = I2,
if d = 3, (C)⇔ 1

β1β2
+ 1

β2β3
+ 1

β3β1
> 1

4 with
β1 =

∣∣∣∣∣
√

f 2(y2)
f 2(y3)

−
√

f 2(y3)
f 2(y2)

∣∣∣∣∣ , β2 =

∣∣∣∣∣
√

f 2(y3)
f 2(y1)

−
√

f 2(y1)
f 2(y3)

∣∣∣∣∣ , β3 =

∣∣∣∣∣
√

f 2(y1)
f 2(y2)

−
√

f 2(y2)
f 2(y1)

∣∣∣∣∣
if d ≥ 4, max1≤k≤d ∑i 6=k f 2(yi )∑i 6=k

1
f 2(yi )

≤ (d + 1)2 ⇒ (C): Γ = Id .
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Time discretization

Existence for calibrated LSV models seems challenging in the general case...
The time-discretized version is much easier ! X = log(S), τt = [ nt

T ]T
n

dXn
t =

(
r − 1

2
f 2(Yτt )

E [f 2(Yτt )|Xn
τt ]

σDup(τt ,Xn
τt )

)
dt

+
f (Yτt )√

E [f 2(Yτt )|Xn
τt ]

σDup(τt ,Xn
τt )dWt

Theorem
Under regularity conditions on f , σDup , ϕ, there exists a constant C > 0 such
that

∀n ≥ 0, |E[ϕ(Xn
T )− ϕ(log(ST ))]| ≤ C

n .
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Simulation of the SDE

The idea (Guyon, Henry Labordère 2008): kernel approximation (for instance,
Gaussian) of the conditional expectation and interacting particles method. For
1 ≤ i ≤ N,

dXn,i ,N
t =

r − 1
2

f 2(Yτt )

Ei
[
f 2(Yτt )|Xn,i ,N

τt

]σDup(τt ,Xn,i ,N
τt )

 dt

+
f (Yτt )√

Ei
[
f 2(Yτt )|Xn,i ,N

τt

]σDup(τt ,Xn,i ,N
τt )dW i

t ,

with for δ > 0 small,

Ei
[
f 2(Yτt )|Xn,i ,N

τt

]
=

1
N ∑N

i=1 f 2(Y n,i ,N
τt )Gδ(X

n,j,N
τt − Xn,i ,N

τt )
1
N ∑N

i=1 Gδ(X
n,j,N
τt − Xn,i ,N

τt )

Speed of convergence ?
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Thank you!

Thank you for your attention!


	Motivation
	Existence for a calibrated RSLV model
	Convergence of the time discretized SDE

