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A generalised version of Rémy’s algorithm

Let (G,),>1 be a sequence of connected discrete pointed
graphs. We are going to define a sequence of graphs (H),>1
recursively.
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A generalised version of Rémy’s algorithm

If H,, is already defined, then

take an edge uniformly at random on H,, (independently
on everything else),

split this edge into 2 edges with a common endpoint,

add a copy of the graph G,,;1 such that the newly created
vertex corresponds to the root of G, 1.

This defines H,, 1. We want to understand the behaviour of H,,
when n is very large.
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Gromov-Hausdorff-Prokhorov topology

A non-empty finite connected graph G can be seen as a compact
measured metric space, by endowing its set of vertices V(G)
with the graph distance dg; and the uniform measure g ;.
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Gromov-Hausdorff-Prokhorov topology

A non-empty finite connected graph G can be seen as a compact
measured metric space, by endowing its set of vertices V(G)
with the graph distance dg; and the uniform measure g ;.

If x,y € V(G), their graph distance dg:(x,y) is the length of the
shortest path in the graph from x to y.
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Gromov-Hausdorff-Prokhorov topology

We see (V(G), dgr, fin,unif) as an element of

M = {compact metric spaces endowed with a
Borel probability measure, seen up to measure
preserving isometry }.

Two measured metric spaces (X, d, u) and (X', d’, ") are
identified if and only if there exists a bijective isometry
¢ : X — X' such that ¢.u = . Let us define a topology on M.
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Gromov-Hausdorff-Prokhorov topology

Let (E,d) be a metric space, and let A and B be non-empty
compact subsets of E. The Hausdorff distance between A and B
is defined as

dQA3)=m4g>0L4cm% BCA@}.
The e-fattening C(¢) of the set C is defined as

Cl):={xeE|d(C)<e}.
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Gromov-Hausdorff-Prokhorov topology

We denote P (E) the set of Borel probability measures on E. For

any two y,v € P(E), we can define their Lévy-Prokhorov
distance as,

dEP(V/V)
= inf{e >0 \ VF € B(E), u(F) < v(F9) + &, v(F) < u(F) + e}
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Gromov-Hausdorff-Prokhorov topology
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Gromov-Hausdorff-Prokhorov topology

(X, d, p)
‘ (X/v dl7 N/)

(E,d)

dte((X,d, 1), (X', d', 1))
{ (), ¢'(X)) v dfp(gus, (@)t }-

inf
(Ed),p:X—E,¢"X'—E
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Gromov-Hausdorff-Prokhorov topology

The function dgyp is a distance on IM which makes it a Polish
space (separable and complete metric space).
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A line breaking construction

Behaviour as n —

Denote a = (a,),>1 = (|E(Gn)|)n>1 the sequence corresponding
to the number of edges in (G,,),>1. Suppose that

n

(e}
, r
Y ai=cn+r, with ) —= < co.
i—1 ="
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A line breaking construction

Behaviour as n —

Theorem (S. 2017+)
We have the following convergence

(Hn/ n_f%l . dgrr ,un,unif) n—>—o>o (%/ d/ ﬂ) s

almost surely in Gromov-Hausdorff-Prokhorov topology.
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A line breaking construction

Behaviour as n —

We can describe the space (H, d, it) using a line-breaking
construction.
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Behaviour as n —

We can describe the space (H, d, it) using a line-breaking
construction. We start with (M3),~,, a positive increasing
(possibly time-inhomogeneous) Markov chain the distribution
of which depends on a. "Break" the half-line R at the values
taken by the chain.
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A line breaking construction

Behaviour as n —

For every n > 1, throw (a, — 1) i.i.d. uniform random points on
the segment [M2_,, M3].

n—17

Ma_, M3
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14/18



A line breaking construction

Behaviour as n —

For every n > 1, throw (a, — 1) i.i.d. uniform random points on
the segment [M2_,, M3].

n—17

M2_, M2

14/18



A line breaking construction

Behaviour as n —

For every n > 1, throw (a, — 1) i.i.d. uniform random points on

the segment [M2_, , M3]. It breaks the segment into a,, bits,

M2_, M2

14/18



A line breaking construction

Behaviour as n —

For every n > 1, throw (a, — 1) i.i.d. uniform random points on

the segment [M2_, , M3]. It breaks the segment into a,, bits,

14/18



A line breaking construction

Behaviour as n —

For every n > 1, throw (a, — 1) i.i.d. uniform random points on
the segment [M?2_, , M3]. It breaks the segment into 4, bits, that

n—17
we glue together to construct G,, a continuous version of G,,.

N — &
G On
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A line breaking construction

Behaviour as n —
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A line breaking construction
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Start with H1 = G;.
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point,
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A line breaking construction
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Glue a copy of G,,.1 by identifying its root to the chosen
point,
Then H,,.1 is defined.

16/18



A line breaking construction

Behaviour as n —

Start with H1 = Gy. If H,, is already defined:
Sample a uniform point on the length of H,,
Glue a copy of G,,.1 by identifying its root to the chosen
point,
Then H,,.1 is defined.

H is obtained as:
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A line breaking construction

Behaviour as n —
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A line breaking construction

Thank you for your attention !
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