Scaling limits for graphs constructed through a generalised Rémy algorithm

Delphin Sénizergues

LAGA, Université Paris 13

May 3, 2018

Let $(G_n)_{n\geq 1}$ be a sequence of connected discrete pointed graphs. We are going to define a sequence of graphs $(H_n)_{n\geq 1}$ recursively.

 H_5

If H_n is already defined, then

take an edge uniformly at random on H_n (independently on everything else),

- take an edge uniformly at random on H_n (independently on everything else),
- split this edge into 2 edges with a common endpoint,

- take an edge uniformly at random on H_n (independently on everything else),
- split this edge into 2 edges with a common endpoint,
- add a copy of the graph G_{n+1} such that the newly created vertex corresponds to the root of G_{n+1} .

take an edge uniformly at random on H_n (independently on everything else),

split this edge into 2 edges with a common endpoint,

add a copy of the graph G_{n+1} such that the newly created vertex corresponds to the root of G_{n+1} .

This defines H_{n+1} . We want to understand the behaviour of H_n when *n* is very large.

A non-empty finite connected graph *G* can be seen as a compact measured metric space, by endowing its set of vertices V(G) with the graph distance d_{gr} and the uniform measure μ_{unif} .

A non-empty finite connected graph *G* can be seen as a compact measured metric space, by endowing its set of vertices V(G) with the graph distance d_{gr} and the uniform measure μ_{unif} . If $x, y \in V(G)$, their graph distance $d_{gr}(x, y)$ is the length of the shortest path in the graph from *x* to *y*.

We see $(V(G), d_{gr}, \mu_{n,unif})$ as an element of

 $\mathbb{M} = \{ \text{compact metric spaces endowed with a} \\ \text{Borel probability measure, seen up to measure} \\ \text{preserving isometry} \}.$

Two measured metric spaces (X, d, μ) and (X', d', μ') are identified if and only if there exists a bijective isometry $\phi : X \to X'$ such that $\phi_*\mu = \mu'$. Let us define a topology on \mathbb{M} .

Let (E, d) be a metric space, and let A and B be non-empty compact subsets of E. The Hausdorff distance between A and Bis defined as

$$d_{\mathrm{H}}^{E}(A,B) = \inf \left\{ \epsilon > 0 \mid A \subset B^{(\epsilon)}, \quad B \subset A^{(\epsilon)} \right\}.$$

The ϵ -fattening $C^{(\epsilon)}$ of the set *C* is defined as

$$C^{(\epsilon)} := \{x \in E \mid d(x, C) < \epsilon\}.$$

We denote $\mathcal{P}(E)$ the set of Borel probability measures on *E*. For any two $\mu, \nu \in \mathcal{P}(E)$, we can define their Lévy-Prokhorov distance as,

$$d_{LP}^{E}(\mu,\nu) = \inf \left\{ \epsilon > 0 \mid \forall F \in \mathcal{B}(E), \mu(F) \le \nu(F^{(\epsilon)}) + \epsilon, \nu(F) \le \mu(F^{(\epsilon)}) + \epsilon \right\}$$

$$d_{\text{GHP}}((X, d, \mu), (X', d', \mu'))$$

=
$$\inf_{(E,d), \phi: X \to E, \phi': X' \to E} \Big\{ d_{\text{H}}^{E}(\phi(X), \phi'(X')) \lor d_{\text{LP}}^{E}(\phi_{*}\mu, (\phi')_{*}\mu') \Big\}.$$

The function d_{GHP} is a distance on \mathbb{M} which makes it a Polish space (separable and complete metric space).

Denote $\mathbf{a} = (a_n)_{n \ge 1} = (|E(G_n)|)_{n \ge 1}$ the sequence corresponding to the number of edges in $(G_n)_{n \ge 1}$. Suppose that

$$\sum_{i=1}^n a_i = cn + r_n, \text{ with } \sum_{n=1}^\infty \frac{r_n}{n^2} < \infty.$$

Theorem (S. 2017+)

We have the following convergence

$$\left(H_n, n^{-\frac{1}{c+1}} \cdot \mathsf{d}_{\mathrm{gr}}, \mu_{n,\mathrm{unif}}\right) \xrightarrow[n \to \infty]{} (\mathcal{H}, \mathsf{d}, \mu),$$

almost surely in Gromov-Hausdorff-Prokhorov topology.

We can describe the space (\mathcal{H}, d, μ) using a *line-breaking construction*.

We can describe the space $(\mathcal{H}, \mathbf{d}, \mu)$ using a *line-breaking construction*. We start with $(M_n^{\mathbf{a}})_{n \geq 1}$, a positive increasing (possibly time-inhomogeneous) Markov chain the distribution of which depends on **a**.

We can describe the space (\mathcal{H}, d, μ) using a *line-breaking construction*. We start with $(M_n^a)_{n \ge 1}$, a positive increasing (possibly time-inhomogeneous) Markov chain the distribution of which depends on **a**. "Break" the half-line \mathbb{R}_+ at the values taken by the chain.

) |------ We can describe the space (\mathcal{H}, d, μ) using a *line-breaking construction*. We start with $(M_n^a)_{n \ge 1}$, a positive increasing (possibly time-inhomogeneous) Markov chain the distribution of which depends on **a**. "Break" the half-line \mathbb{R}_+ at the values taken by the chain.

A line breaking construction

For every $n \ge 1$, throw $(a_n - 1)$ i.i.d. uniform random points on the segment $[M_{n-1}^{a}, M_{n}^{a}]$.

$$\begin{array}{ccc} M_{n-1}^{\mathbf{a}} & & M_n^{\mathbf{a}} \\ \star & & & \star \end{array}$$

A line breaking construction

For every $n \ge 1$, throw $(a_n - 1)$ i.i.d. uniform random points on the segment $[M_{n-1}^{a}, M_{n}^{a}]$.

A line breaking construction

For every $n \ge 1$, throw $(a_n - 1)$ i.i.d. uniform random points on the segment $[M_{n-1}^{\mathbf{a}}, M_n^{\mathbf{a}}]$. It breaks the segment into a_n bits,

A line breaking construction

For every $n \ge 1$, throw $(a_n - 1)$ i.i.d. uniform random points on the segment $[M_{n-1}^{a}, M_{n}^{a}]$. It breaks the segment into a_n bits,

A line breaking construction

For every $n \ge 1$, throw $(a_n - 1)$ i.i.d. uniform random points on the segment $[M_{n-1}^a, M_n^a]$. It breaks the segment into a_n bits, that we glue together to construct \mathcal{G}_n , a continuous version of G_n .

A line breaking construction

A line breaking construction

pology A line breaking construction

A generalised version of Rémy's algorithm Gromov-Hausdorff-Prokhorov topology Behaviour as $n \to \infty$

 \mathcal{H}_1

A line breaking construction

Start with $\mathcal{H}_1 = \mathcal{G}_1$.

Sample a uniform point on the length of \mathcal{H}_n ,

Sample a uniform point on the length of \mathcal{H}_n , Glue a copy of \mathcal{G}_{n+1} by identifying its root to the chosen point,

Sample a uniform point on the length of \mathcal{H}_n , Glue a copy of \mathcal{G}_{n+1} by identifying its root to the chosen point,

Then \mathcal{H}_{n+1} is defined.

Sample a uniform point on the length of \mathcal{H}_n ,

Glue a copy of \mathcal{G}_{n+1} by identifying its root to the chosen point,

Then \mathcal{H}_{n+1} is defined.

 \mathcal{H} is obtained as:

$$\mathcal{H} = \overline{\bigcup_{n \ge 1} \mathcal{H}_n}.$$

A generalised version of Rémy's algorithm Gromov-Hausdorff-Prokhorov topology Behaviour as $n \rightarrow \infty$

Thank you for your attention !