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1. Introduction: physical motivations



Ma ins and physical systems

Markov chains are random sequences (X, ),cN OVer a state space X'
defined by a transition probability

P(x,S) = IP[xn_H €S| x,= x].

This is the probability of reaching the set S starting from x € X.

Such systems are used to model a
variety of (physical) systems:
e molecules, chemical reactions;
e metals, phase transition;

e surface interactions, etc.
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Typical situation

In classical mechanics, one has generally
Xnt1 =Xp + F(x,)+ \/?Gn,
with
e Fis aforce acting on the system, typically F(x) = =VH(x);

e the Hamiltonian H(x) represents a potential energy ;

e T is atemperature, and G is a random noise.

There are natural questions about such systems:

e their long time behavior (Sec. 2. );
e the probabilities of fluctuations (Sec. 3. );

e correlations, relaxation times, linear response theory, etc.
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2. Markov chains and ergodicity



We say that a Markov chain (x,) has an invariant distribution y* when

Xn~ W = Xnp1 ~ W

and that the process is ergodic when, for any initial distribution,
Xy ~ W as n — +oo.

Some useful applications:

e more physical insight into the considered system;
e MCMC techniques;

stability of numerical schemes;

e stochastic partial differential equations...
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An ergodic theorem

M. Hairer & J. Mattingly
Assume there exist W : X - R,y €(0,1) and C > 0 such that

(L) PW<yW+C,
and a >0, 11 € P(X) such that

(M) inf P(x,-) > an(-),

xeC

for C a large enough level set of W. Then, there exist a unique
' €P(X),c>0and A€ (0,1) such that for any p € P(X)

IP" p— pllw < c A"l — ¥l

F()l J
Here: ||fl|=sup ————~—, |lu—v|lw = sup x)(pu—v)(dx).
rer T+ w(x) HTVIwWE SR X<P( )(p=v)(dx)

Grégoire FERRE, Gabriel StoLTz, Mathias ROUsSET CERMICS - ENPC

8/16



A basic example

Dynamics over IR with F(x;y) = (=2x;-2y).

The force F = —VH derives
from the energy

H(x,y) = x° +y°.

0.5

In practice, one can choose

05 W(Xr)/) = H(Xry)'

the energy of the system.
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A basic example

Dynamics over IR with F(x;y) = (=2x;-2y).

The force F = —VH derives
from the energy

H(x,y) = x° +y°.

In practice, one can choose

W(x,y)=H(xy),

the energy of the system.
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3. Feynman-Kac dynamics



From an ergodic Markov chain (x,), one typically computes time

averages:
n-1 n
R
E f(xk)i—“ﬁf fdu'.
k=0 X

I |-

Question: what is the probability that

1w .
- Zf(xk) * L fdu
k=1
for a large but finite n?

Problem: this is a rare event, very difficult to sample numerically.
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Feynman—Kac as importance sampling

Idea: give more importance to trajectories with larger values of f. In
practice, replace for example

E, [p(x,)] by E, [go(xn)ezz;lo f(xk)] '

Problem: this semigroup does not conserve probability. In
practice, we can study:

IE” [(p ezk 0 Xk)]
[ezk of(xk)]

D, (1) (@

or
A(f) = lim llogIE [Zz;lof(x")].

n—oo N
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Define a weighted transition (assumed with some regularity):

pf =efp.
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Ergodicity for Feynman—Kac models

Define a weighted transition (assumed with some regularity):
pf =efp.

Theorem [G.F.,, M. Rousset & G. Stoltz, in prep.]

If there exist a function W > 1 and sequences y,, = 0, b, > 0, compact
sets K, such that

(L) P'W(x)<y,W(x)+b,lk,

with y, — 0, and that for any compact K C X there is 1jx € P(X),
ak > 0 such that

(M) VYxeK, P'(x-)>aknk()
then there exist a unique y} and A € (0,1) such that for any p € P(X),

1Py, (1) — pellw < CuA".
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Numerics |: Quantum physics

Brownian dynamics (x,) over R? with f(x) = —|x|°.

The weight

k-1
wk = exp Zf(x,m) .
i=0

> of particle m at time k is used
0 for resampling
(renormalization).
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Numerics |: Quantum physics

Brownian dynamics (x,) over R? with f(x) = —|x|°.

The weight

k-1
wk = exp Zf(x,m) .
i=0

of particle m at time k is used
| for resampling
(renormalization).

& Conclusion: there is a
confinement by selection, i.e.
through f.
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Numerics ll: importance sampling

Ornstein-Uhlenbeck dynamics with F(x,y) = (-2x,—2y). Weight
function f(x,y) = x.

The weight

k-1
wk = exp[Zf(x,-m)].
i=0

of particle m at time k is used
for resampling
(renormalization).

0.5

-0.5
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Numerics ll: importance sampling

Ornstein-Uhlenbeck dynamics with F(x,y) = (-2x,-2y). Weight
function f(x,y) = x.

The weight

0.5 |-

k-1
wk =exp Zf(x,m) .
i=0

1 of particle m at time k is used
for resampling

(renormalization).
-0.5

Conclusion: the particles are
selected towards the right.
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Conclusion

Take home message:

Grégoire FERRE

Long t

problems of ergodicity, long time behavior;

Feynman—Kac dynamics: funny problem (as far as mathematics
can be funny);

new results, «energy» for non-probabilistic operators;

further works: consequences for large deviations of additive
functionals.
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