

ParisTech

gregoire.ferre@enpc.fr

Long time stability of Feynman-Kac models.

Les probabilités de demain

Grégoire Ferré, Gabriel Stoltz, Mathias Rousset

CERMICS - ENPC, INRIA & LABEX BEZOUT

Thursday, May 3rd, 2018

Outline

1. Introduction: physical motivations

2. Markov chains and ergodicity

3. Feynman–Kac dynamics

1. Introduction: physical motivations

Markov chains and physical systems

Markov chains are random sequences $(x_n)_{n\in\mathbb{N}}$ over a state space \mathcal{X} defined by a transition probability

$$P(x,S) = \mathbb{P}[x_{n+1} \in S \mid x_n = x].$$

This is the probability of reaching the set *S* starting from $x \in \mathcal{X}$.

Such systems are used to model a variety of (physical) systems:

- molecules, chemical reactions;
- metals, phase transition;
- surface interactions, etc.

Typical situation

In classical mechanics, one has generally

$$x_{n+1} = x_n + F(x_n) + \sqrt{T}G_n,$$

with

- *F* is a force acting on the system, typically $F(x) = -\nabla H(x)$;
- the Hamiltonian H(x) represents a potential energy;
- *T* is a temperature, and *G* is a random noise.

There are natural questions about such systems:

- their long time behavior (Sec. 2.);
- the probabilities of fluctuations (Sec. 3.);
- correlations, relaxation times, linear response theory, etc.

2. Markov chains and ergodicity

Ergodicity: what and what for?

We say that a Markov chain (x_n) has an invariant distribution μ^* when

$$x_n \sim \mu^* \Rightarrow x_{n+1} \sim \mu^*$$
,

and that the process is ergodic when, for any initial distribution,

$$x_n \sim \mu^*$$
 as $n \to +\infty$.

Some useful applications:

- more physical insight into the considered system;
- MCMC techniques;
- · stability of numerical schemes;
- stochastic partial differential equations...

An ergodic theorem

M. Hairer & J. Mattingly

Assume there exist $W: \mathcal{X} \to \mathbb{R}_+$, $\gamma \in (0,1)$ and C > 0 such that

(L)
$$PW \leq \gamma W + C$$
,

and $\alpha > 0$, $\eta \in \mathcal{P}(\mathcal{X})$ such that

(M)
$$\inf_{x \in \mathcal{C}} P(x, \cdot) \geqslant \alpha \eta(\cdot),$$

for $\mathcal C$ a large enough level set of W. Then, there exist a unique $\mu^* \in \mathcal P(\mathcal X)$, c > 0 and $\lambda \in (0,1)$ such that for any $\mu \in \mathcal P(\mathcal X)$

$$\|P^n\mu-\mu^*\|_W\leqslant c\lambda^n\|\mu-\mu^*\|_W.$$

Here:
$$\|f\| = \sup_{x \in \mathcal{X}} \frac{|f(x)|}{1 + W(x)}$$
, $\|\mu - \nu\|_W = \sup_{\|\varphi\| \leqslant 1} \int_{\mathcal{X}} \varphi(x) (\mu - \nu) (dx)$.

A basic example

Dynamics over \mathbb{R}^2 with F(x;y) = (-2x;-2y).

The force $F = -\nabla H$ derives from the energy

$$H(x,y)=x^2+y^2.$$

In practice, one can choose

$$W(x,y) = H(x,y),$$

the energy of the system.

A basic example

Dynamics over \mathbb{R}^2 with F(x;y) = (-2x;-2y).

The force $F = -\nabla H$ derives from the energy

$$H(x,y)=x^2+y^2.$$

In practice, one can choose

$$W(x,y) = H(x,y),$$

the energy of the system.

A basic example

Dynamics over \mathbb{R}^2 with F(x;y) = (-2x;-2y).

The force $F = -\nabla H$ derives from the energy

$$H(x,y)=x^2+y^2.$$

In practice, one can choose

$$W(x,y) = H(x,y),$$

the energy of the system.

3. Feynman–Kac dynamics

Motivations

From an ergodic Markov chain (x_n) , one typically computes time averages:

$$\frac{1}{n}\sum_{k=0}^{n-1}f(x_k)\xrightarrow{n\to+\infty}\int_{\mathcal{X}}f\,\mathrm{d}\mu^*.$$

Question: what is the probability that

$$\frac{1}{n}\sum_{k=1}^{n}f(x_{k})\neq\int_{\mathcal{X}}f\,d\mu^{*}$$

for a large but finite *n*?

Problem: this is a rare event, very difficult to sample numerically.

Feynman-Kac as importance sampling

Idea: give more importance to trajectories with larger values of *f*. In practice, replace for example

$$\mathbb{E}_{x}[\varphi(x_n)]$$
 by $\mathbb{E}_{x}\Big[\varphi(x_n)e^{\sum_{k=0}^{n-1}f(x_k)}\Big].$

Problem: this semigroup does not conserve probability. In practice, we can study:

$$\Phi_{n}(\mu)(\varphi) = \frac{\mathbb{E}_{\mu}\left[\varphi(x_{n})e^{\sum_{k=0}^{n-1}f(x_{k})}\right]}{\mathbb{E}_{\mu}\left[e^{\sum_{k=0}^{n-1}f(x_{k})}\right]},$$

or

$$\Lambda(f) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\mu} \left[e^{\sum_{k=0}^{n-1} f(x_k)} \right].$$

Ergodicity for Feynman–Kac models

Define a weighted transition (assumed with some regularity):

$$P^f = e^f P$$
.

Ergodicity for Feynman–Kac models

Define a weighted transition (assumed with some regularity):

$$P^f = e^f P$$
.

Theorem [G.F., M. Rousset & G. Stoltz, in prep.]

If there exist a function $W \ge 1$ and sequences $\gamma_n \ge 0$, $b_n \ge 0$, compact sets K_n such that

(L)
$$P^fW(x) \leq \gamma_n W(x) + b_n \mathbb{1}_{K_n}$$
,

with $\gamma_n \to 0$, and that for any compact $K \subset \mathcal{X}$ there is $\eta_K \in \mathcal{P}(\mathcal{X})$, $\alpha_K > 0$ such that

(M)
$$\forall x \in K$$
, $P^f(x, \cdot) \ge \alpha_K \eta_K(\cdot)$,

then there exist a unique μ_f^* and $\lambda \in (0,1)$ such that for any $\mu \in \mathcal{P}(\mathcal{X})$,

$$\|\Phi_n(\mu) - \mu_f^*\|_W \leq C_u \lambda^n$$
.

Brownian dynamics (x_n) over \mathbb{R}^2 with $f(x) = -|x|^2$.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Brownian dynamics (x_n) over \mathbb{R}^2 with $f(x) = -|x|^2$.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Brownian dynamics (x_n) over \mathbb{R}^2 with $f(x) = -|x|^2$.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Brownian dynamics (x_n) over \mathbb{R}^2 with $f(x) = -|x|^2$.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Brownian dynamics (x_n) over \mathbb{R}^2 with $f(x) = -|x|^2$.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Brownian dynamics (x_n) over \mathbb{R}^2 with $f(x) = -|x|^2$.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

of particle m at time k is used for resampling (renormalization).

Conclusion: there is a confinement by selection, i.e. through f.

Ornstein-Uhlenbeck dynamics with F(x,y) = (-2x,-2y). Weight function f(x,y) = x.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Ornstein-Uhlenbeck dynamics with F(x,y) = (-2x,-2y). Weight function f(x, y) = x.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Ornstein-Uhlenbeck dynamics with F(x,y) = (-2x,-2y). Weight function f(x, y) = x.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Ornstein-Uhlenbeck dynamics with F(x,y) = (-2x,-2y). Weight function f(x, y) = x.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Ornstein-Uhlenbeck dynamics with F(x,y) = (-2x,-2y). Weight function f(x, y) = x.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

Ornstein-Uhlenbeck dynamics with F(x,y) = (-2x,-2y). Weight function f(x, y) = x.

The weight

$$w_m^k = \exp\left(\sum_{i=0}^{k-1} f(x_i^m)\right).$$

of particle m at time k is used for resampling (renormalization).

Conclusion: the particles are selected towards the right.

Conclusion

Take home message:

- problems of ergodicity, long time behavior;
- Feynman–Kac dynamics: funny problem (as far as mathematics can be funny);
- new results, «energy» for non-probabilistic operators;
- further works: consequences for large deviations of additive functionals.