Homogenization on supercritical percolation cluster

Paul Dario Université Paris-Dauphine and Ecole Normale supérieure joint work with S.Armstrong

May 3, 2018

The model

Model: percolation on the hypercubic lattice

- lattice \mathbb{Z}^d , $d \ge 2$.
- V set of vertices: $V := \mathbb{Z}^d$.
- E_d set of edges: $E_d := \{(x, y) : x, y \in \mathbb{Z}^d, |x y|_1 = 1\}.$

The model

Model: percolation on the hypercubic lattice

- lattice \mathbb{Z}^d , $d \ge 2$.
- V set of vertices: $V := \mathbb{Z}^d$.
- E_d set of edges: $E_d := \{(x, y) : x, y \in \mathbb{Z}^d, |x y|_1 = 1\}.$
- Fix $p \in [0, 1]$.
- $(\omega_e)_{e\in E_d}$ be a sequence of i.i.d Bernouilli random variables s.t

$$\mathbb{P}(\omega_e = 1) = 1 - \mathbb{P}(\omega_e = 0) = p.$$

Percolation phases

There exists $p_c = p_c(d) \in (0, 1)$ such that

- $p < p_c$, subcritical phase
- $p = p_c$, critical phase
- $p > p_c$, supercritical phase \rightarrow there exists a unique infinite cluster.

The supercritical percolation cluster is well-behaved

Theorem (Grimmett-Marstrand, 1990, Chayes-Chayes-Newman 1987)

• Assume $d \ge 3$ and let $p > p_c$, there exists $L \coloneqq L(p, d) < \infty$ such that

$$\mathcal{C}_{\infty} \cap \left\{ x \in \mathbb{Z}^d : 0 \le x_1 \le L \right\}$$

contains an infinite connected component of open edges almost surely. • There exists $\xi(p) > 0$ such that, for each $x \in \mathbb{Z}^d$,

$$\mathbb{P}\left(0\leftrightarrow x, 0 \nleftrightarrow \infty\right) \leq \exp\left(-\xi(p)|x|\right).$$

The supercritical percolation cluster is well-behaved

Theorem (Antal-Pisztora, 1996)

Let $p > p_c$. There exists $\rho := \rho(p, d) < \infty$ and $\alpha := \alpha(d, p) > 0$ such that for each $y \in \mathbb{Z}^d$ $\mathbb{P}(0 \leftrightarrow y, \operatorname{dist}(0, y) \ge \rho|y|) \le \exp(-\alpha|y|)$.

A notion of good cube

Definition

We say that a cube □ is decent if

- There exists a unique crossing cluster in \Box , denoted by $\mathcal{C}(\Box)$.
- All open paths of size larger than size(□)/10 is connected to C(□) within
 □.

Figure 1: A decent box

A notion of good cube

Definition

We say that a cube □ is decent if

- There exists a unique crossing cluster in $\Box,$ denoted by $\mathcal{C}\left(\Box\right).$
- All open paths of size larger than size(□)/10 is connected to C(□) within
 □.

We say that a cube is good if \Box and $\frac{5}{4}\Box$ are decent.

Figure 1: A decent box

Figure 2: A good box

→ ∃ >

A notion of good cubes

Theorem (Penrose-Pisztora, 1996)

Let \Box be a cube in \mathbb{Z}^d , then there exists a constant $C \coloneqq C(d, p) < \infty$,

 $\mathbb{P}(\Box \text{ is a good cube}) \geq 1 - C \exp(-C^{-1} \operatorname{size}(\Box)).$

A notion of good cubes

Theorem (Penrose-Pisztora, 1996)

Let \Box be a cube in \mathbb{Z}^d , then there exists a constant $C \coloneqq C(d, p) < \infty$,

 $\mathbb{P}(\Box \text{ is a good cube}) \geq 1 - C \exp(-C^{-1} \operatorname{size}(\Box)).$

Proposition

Given two cubes \Box_1 and \Box_2 with the same size and 1 face in common then $\mathcal{C}(\Box_1)$ and $\mathcal{C}(\Box_2)$ are connected within $\Box_1 \cup \Box_2$.

By contradiction, assume that

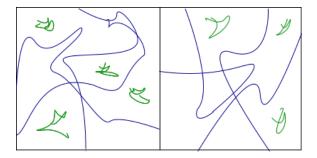


Figure 3: Two good boxes disconnected

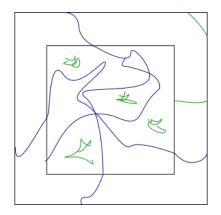


Figure 4: A look at $\frac{5}{4}\Box_1$...

Paul Dario

Image: A math a math

э

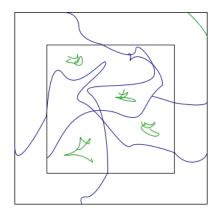


Figure 5: ...shows that the boxes are connected.

3

Image: A match a ma

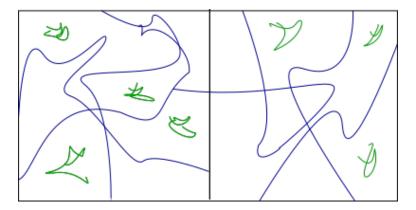


Figure 6: The bigger picture.

Dario

3

Image: A match a ma

Triadic cubes

Definition

A triadic cube of \mathbb{Z}^d is a cube of the form, for some $n \in \mathbb{N}$

$$z+\left(-\frac{3^n}{2},\frac{3^n}{2}\right)^d,\ z\in 3^n\mathbb{Z}^d.$$

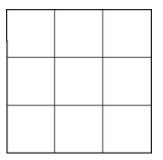


Figure 7: Triadic cubes.

Date	Dario
r au	Dario

3

Image: A mathematical states and a mathem

Triadic cubes

Proposition

Two triadic cubes are either included in one another or disjoint.

• Idea: create of partition of good triadic cubes of different sizes.

A partition of good boxes

Proposition (A partition \mathcal{P} of good boxes)

There exists, almost surely, a partition $\mathcal P$ of $\mathbb Z^d$ into good cubes such that

 Two neighboring cubes are of comparable sizes: for each □, □' ∈ P such that dist (□, □') ≤ 1,

$$\frac{1}{3} \leq \frac{\text{size}\left(\Box\right)}{\text{size}\left(\Box'\right)} \leq 3.$$

• The size of each cube is "almost" bounded, for each $x \in \mathbb{Z}^d$,

 $\mathbb{E}\left[\exp\left(\operatorname{size}\left(\Box_{\mathcal{P}}(x)\right)\right)\right] < \infty.$

Pau	D	ario
		arro

What the partition looks like (without clusters)

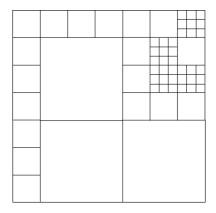


Figure 8: A partition of good cubes.

< 47 ▶

3

Application of the partition

- Estimating the chemical distance on the infinite cluster
- Extend a function defined on \mathcal{C}_∞ to \mathbb{Z}^d
- Proving functional inequalities on the infinite cluster.

Thank you!

Paul Dario	

3

・ロト ・ 四ト ・ ヨト ・ ヨト