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Polymerization & Nucleation

small particles
synthesis−−−−−−−−⇀↽−−−−−−−−

decomposition
Big (stable) clusters.

Figure: Flyvbjerg, Jobs, and Leibler’s model (96’ PNAS)
for the self-assembly of microtubules, retrieved from
Morris et al. (09’ Biochimica et Biophysica Acta)

I Physics:
Aerosols...

I Chemistry:
Polymers/monomers

I Biology:
Protein/Peptide
v.s. amino acid
monomers



Experiments: large variability in nucleation
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Figure: Experiments for the evolution of polymerized mass.
From data published in Xue et al.(08’ PNAS).

Observations:

I sharp curve;
I huge variance

in time.



Goals of our study

I Explain sharp phase transition in nucleation;

I Explain high variance of the transition moment.



Literature: coagulation and fragmentation models

I Particles are identified by their sizes.
I Reactions: for m =

∑n
i=1 mi ,{

(m1)+(m2)+ . . .+(mn)→ (m) (coagulation),
(m)→ (m1)+(m2)+ . . .+(mn) (fragmentation),

I Binary reaction: Smoluchowski Model

(i) + (j)
K(i ,j)−−−⇀↽−−−
F (i ,j)

(i + j).

where (F (i , j)), (K (i , j)) are reaction rates.



Literature: coagulation and fragmentation models

I Deterministic studies:
Oosawa et al. (75), Ball et al. (86’), Penrose (89’,08’),
Jabin et al. (03’), Niethammer (04’) . . .

I Stochastic studies:
Jeon (98’), Durrett et al. (99’), Norris (99’), Ranjbar et al. (10’),
Bertoin (06’,17’), Calvez et al. (12’), Sun (18’) . . .

I Survey:
Aldous (99’), Hingant & Yvinec (16’)

Can not explain the high variance observed in the
experiments! (CLT is not enough!)



Model with the nucleus

I Reaction:(1)+(k)
κk

+−→ (k + 1),

(k)
κk,a

−−→ (a1)+(a2)+ · · ·+(ap), ∀p≥2, a1+ · · ·+ap=k,

I Critical Nucleus size: nc
I Polymers larger than the nucleus are more stable than the

smaller polymers: ∀s < nc < `,

κs
−
κs

+
�

κ`−
κ`+

.

where κk
− =

∑
a κ

k,a
− .



Assumptions & Markovian description
I Only monomers at t = 0 with total mass N;
I Scaling assumption: for two positive sequences (λk), (µk)

and µ > 0,

κk
+ = λk , κk

− =
{

N µk, if k<nc

µ, if k≥nc

I UN
k (t) := number of polymers of size k at time t;

I Markov process (UN
k (t), k ∈ N) with generator

ΩN(f )(u) =
+∞∑
k=1

λkuk
u1
N [f (u+ek+1−ek−e1)−f (u)]

+
+∞∑
k=2

(
Nµk1{k<nc} + µ1{k≥nc}

)
uk

∫
Sk

[f (u+y−ek)−f (u)] νk(dy)

where (νk) are fragmentation measures and (Sk) are the set of all
possible fragmentations.



Mathematical Interpretation
I Lag time: for any fraction δ ∈ (0, 1),

LN
δ := inf{t ≥ 0 :

∑
k≥nc

kUN
k (t) ≥ δN}.

I Observations in terms of lag time:
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Figure: Xue et al.(08’ PNAS).

I sharp phase transition:
for any δ1, δ2 ∈ (0, 1),

LN
δ1 ∼ LN

δ2

I high variance:

O
(√

Var(LN
δ )
)
∼ O

(
E(LN

δ )
)



Main Results (for nc ≥ 3)

I The moment of the first nucleus:

T N := inf{t ≥ 0 : UN
nc (t) = 1}.

With high probability, for any δ ∈ (0, δ0),

LN
δ ∼ O

(
TN + log(N)

)
.

I For the convergence in probability

lim
N→∞

(
T N

Nnc−3

)
= Eρ,

where Eρ is an exponential random variable with parameter
ρ only depends on (λk , µk , k ≤ nc − 1).
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Main Results (for nc ≥ 3)

I The moment of the first nucleus:

T N := inf{t ≥ 0 : UN
nc (t) = 1}.

With high probability, for any δ ∈ (0, δ0),

If nc > 3, LN
δ

Nnc−3 ∼ O (Eρ) ←− Not depends on δ & Large var!

I For the convergence in probability

lim
N→∞

(
T N

Nnc−3

)
= Eρ,

where Eρ is an exponential random variable with parameter
ρ only depends on (λk , µk , k ≤ nc − 1).



Sketch of proofs (Step I)
Before T N , UN

k (t) ≡ 0, for all k > nc + 1.
A simple example, Becker-Döring reactions:

(1) + (k)
λk−−−−⇀↽−−−−

Nµk+1
(k + 1).

UN
1

fast process

UN
2 UN

3 · · ·

λkUN
k UN

1 /N ∼ O(1)UN
k

Nµk+1UN
k+1 ∼ O(N)UN

k+1

UN
nc −1 UN

nc slow process



Sketch of proofs (Step I)

I Distribution of T N only depends on the fast-slow system
(UN

1 (t), . . . ,UN
nc (t)).

I Study the dynamic on the very large time interval [0,Nnc−3t]
by using marked Poisson point processes;

I Main Difficulties:
I very large fluctuations

(Time scale Nnc−3 v.s. Space scale N).
I multi-dimensional stochastic averaging system:

hard to identify the limit of occupation measures
I Techniques: coupling, flow balance equations...
I Proofs work for general fragmentation measures under

reasonable conditions.



Sketch of proofs (Step II)

After time T N , by coupling, number of stable polymers

(UN
nc (t),UN

nc +1(t), . . . )

could be lower bounded by a supercritial branching process.
I The lag time of the branching process is less than K log N

with probability p0 > 0.
I Therefore, stochastically

T N ≤ LN
δ ≤

Gp0∑
i=1

(T N
i + K log N)

where Gp0 is a geometric random variable.



Future work

I Experiments: fragmentation rates are more likely sublinear for
smaller polymers, i.e., for k small,

κk
− = O (Nα) , for an 0 < α < 1.

See the biology review Morris et al. (09’).

I In the general case κ−/κ+ ∼ φ(N), the nucleation time
should be O(φ(N)nc−2/N).

I Nucleation in a multi-type polymers environment.
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Thank you!
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